Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-27709111

RESUMO

The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based integrated fluidic circuit that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to various stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

3.
Anal Chem ; 86(19): 9901-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25207435

RESUMO

Homogeneous assay platforms for measuring protein-ligand interactions are highly valued due to their potential for high-throughput screening. However, the implementation of these multiplexed assays in conventional microplate formats is considerably expensive due to the large amounts of reagents required and the need for automation. We implemented a homogeneous fluorescence anisotropy-based binding assay in an automated microfluidic chip to simultaneously interrogate >2300 pairwise interactions. We demonstrated the utility of this platform in determining the binding affinities between chromatin-regulatory proteins and different post-translationally modified histone peptides. The microfluidic chip assay produces comparable results to conventional microtiter plate assays, yet requires 2 orders of magnitude less sample and an order of magnitude fewer pipetting steps. This approach enables one to use small samples for medium-scale screening and could ease the bottleneck of large-scale protein purification.


Assuntos
Proteínas Cromossômicas não Histona/análise , Ensaios de Triagem em Larga Escala/economia , Histonas/análise , Técnicas Analíticas Microfluídicas/instrumentação , Peptídeos/análise , Cromatina/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Polarização de Fluorescência , Histonas/química , Histonas/metabolismo , Humanos , Ligantes , Técnicas Analíticas Microfluídicas/métodos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA