Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 54: 110466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774239

RESUMO

A Gram-positive bacterium designated as strain ORF15-23 was isolated from a soil sample collected from rainfed organic paddy fields in Roi Et province, Thailand. This strain is previously reported to produce indole-3-acetic acid and 2-acetyl-1-pyrroline (2AP) compound, solubilize potassium feldspar and promote growth of rice seedlings. The genome sequencing was carried out using Illumina MiSeq platform. The draft genome of strain ORF15-23 was 2,562,005 bp in length with 1677 protein coding sequences and an average G + C content of 72.97 mol.%. Phylogenomic tree supports the assignment of strain ORF15-23 as member of the genus Micrococcus. A comparison of average nucleotide identity (ANIb) values revealed that strain ORF15-23 shared 96.95 % identity with the genome of M. yunnanensis DSM 21948T. The draft genome sequence of M. yunnanesis ORF15-23 has been deposited in the DDBJ/EMBL/GenBank databases under the accession number JAZDRZ000000000. This genome sequence data provides insightful information for the taxonomic characterization and further biotechnological exploitation of M. yunnanesis ORF15-23.

2.
Plants (Basel) ; 12(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836181

RESUMO

Salinity is one of the most devastating abiotic stresses hampering the growth and production of rice. Nine indole-3-acetic acid (IAA)-producing salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) were inoculated into Thai jasmine rice (Oryza sativa L.) variety Khao Dawk Mali 105 (KDML105) seedlings grown under different concentrations of NaCl (0, 50, 100, and 150 mM). The ST-PGPR strains significantly promoted the growth parameters, chlorophyll content, nutrient uptake (N, P, K, Ca, and Mg), antioxidant activity, and proline accumulation in the seedlings under both normal and saline conditions compared to the respective controls. The K+/Na+ ratio of the inoculated seedlings was much higher than that of the controls, indicating greater salt tolerance. The most salt-tolerant and IAA-producing strain, Sinomonas sp. ORF15-23, yielded the highest values for all the parameters, particularly at 50 mM NaCl. The percentage increases in these parameters relative to the controls ranged from >90% to 306%. Therefore, Sinomonas sp. ORF15-23 was considered a promising ST-PGPR to be developed as a bioinoculant for enhancing the growth, salt tolerance, and aroma of KDML105 rice in salt-affected areas. Environmentally friendly technologies such as ST-PGPR bioinoculants could also support the sustainability of KDML105 geographical indication (GI) products. However, the efficiency of Sinomonas sp. ORF15-23 should be evaluated under field conditions for its effect on rice nutrient uptake and growth, including the 2AP level.

3.
Biology (Basel) ; 10(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681166

RESUMO

Thai jasmine rice (Oryza sativa L. KDML105), particularly from inland salt-affected areas in Thailand, is both domestically and globally valued for its unique aroma and high grain quality. The key aroma compound, 2-acetyl-1-pyrroline (2AP), has undergone a gradual degradation due to anthropogenic soil salinization driven by excessive chemical input and climate change. Here, we propose a cheaper and an ecofriendly solution to improve the 2AP levels, based on the application of plant growth-promoting rhizobacteria (PGPR). In the present study, nine PGPR isolates from rice rhizosphere were investigated for the 2AP production in liquid culture and the promotion potential for 2AP content in KDML105 rice seedlings under four NaCl concentrations (0, 50, 100, and 150 mM NaCl). The inoculation of 2AP-producing rhizobacteria resulted in an increase in 2AP content in rice seedling leaves with the maximum enhancement from Sinomonas sp. ORF15-23 at 50 mM NaCl (19.6 µg·kg-1), corresponding to a 90.2% increase as compared to the control. Scanning electron microscopy confirmed the colonization of Sinomonas sp. ORF15-23 in the roots of salinity-stressed KDML105 seedlings. Our results provide evidence that Sinomonas sp. ORF15-23 could be a promising PGPR isolate in promoting aroma level of Thai jasmine rice KDML105 under salt stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA