Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Med Image Anal ; 16(1): 201-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21920797

RESUMO

Cardiac resynchronisation therapy (CRT) is an effective treatment for patients with congestive heart failure and a wide QRS complex. However, up to 30% of patients are non-responders to therapy in terms of exercise capacity or left ventricular reverse remodelling. A number of controversies still remain surrounding patient selection, targeted lead implantation and optimisation of this important treatment. The development of biophysical models to predict the response to CRT represents a potential strategy to address these issues. In this article, we present how the personalisation of an electromechanical model of the myocardium can predict the acute haemodynamic changes associated with CRT. In order to introduce such an approach as a clinical application, we needed to design models that can be individualised from images and electrophysiological mapping of the left ventricle. In this paper the personalisation of the anatomy, the electrophysiology, the kinematics and the mechanics are described. The acute effects of pacing on pressure development were predicted with the in silico model for several pacing conditions on two patients, achieving good agreement with invasive haemodynamic measurements: the mean error on dP/dt(max) is 47.5±35mmHgs(-1), less than 5% error. These promising results demonstrate the potential of physiological models personalised from images and electrophysiology signals to improve patient selection and plan CRT.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Contração Miocárdica , Terapia Assistida por Computador/métodos , Disfunção Ventricular Esquerda/prevenção & controle , Disfunção Ventricular Esquerda/fisiopatologia , Idoso , Simulação por Computador , Diagnóstico por Computador/métodos , Feminino , Humanos , Masculino , Projetos Piloto , Resultado do Tratamento , Disfunção Ventricular Esquerda/diagnóstico
2.
Artigo em Inglês | MEDLINE | ID: mdl-20879343

RESUMO

Despite recent efforts in cardiac electrophysiology modelling, there is still a strong need to make macroscopic models usable in planning and assistance of the clinical procedures. This requires model personalisation i.e. estimation of patient-specific model parameters and computations compatible with clinical constraints. Fast macroscopic models allow a quick estimation of the tissue conductivity, but are often unreliable in prediction of arrhythmias. On the other side, complex biophysical models are quite expensive for the tissue conductivity estimation, but are well suited for arrhythmia predictions. Here we present a coupled personalisation framework, which combines the benefits of the two models. A fast Eikonal (EK) model is used to estimate the conductivity parameters, which are then used to set the parameters of a biophysical model, the Mitchell-Schaeffer (MS) model. Additional parameters related to Action Potential Duration (APD) and APD restitution curves for the tissue are estimated for the MS model. This framework is applied to a clinical dataset provided with an hybrid X-Ray/MR imaging on an ischemic patient. This personalised MS Model is then used for in silico simulation of clinical Ventricular Tachycardia (VT) stimulation protocol to predict the induction of VT. This proof of concept opens up possibilities of using VT induction modelling directly in the intervention room, in order to plan the radio-frequency ablation lines.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/fisiopatologia , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Simulação por Computador , Diagnóstico por Computador/métodos , Humanos , Isquemia Miocárdica/complicações , Taquicardia Ventricular/complicações
3.
Med Image Anal ; 13(3): 419-31, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19223220

RESUMO

We describe a system for respiratory motion correction of MRI-derived roadmaps for use in X-ray guided cardiac catheterisation procedures. The technique uses a subject-specific affine motion model that is quickly constructed from a short pre-procedure MRI scan. We test a dynamic MRI sequence that acquires a small number of high resolution slices, rather than a single low resolution volume. Additionally, we use prior knowledge of the nature of cardiac respiratory motion by constraining the model to use only the dominant modes of motion. During the procedure the motion of the diaphragm is tracked in X-ray fluoroscopy images, allowing the roadmap to be updated using the motion model. X-ray image acquisition is cardiac gated. Validation is performed on four volunteer datasets and three patient datasets. The accuracy of the model in 3D was within 5mm in 97.6% of volunteer validations. For the patients, 2D accuracy was improved from 5 to 13mm before applying the model to 2-4mm afterwards. For the dynamic MRI sequence comparison, the highest errors were found when using the low resolution volume sequence with an unconstrained model.


Assuntos
Cateterismo Cardíaco/métodos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Modelos Biológicos , Mecânica Respiratória , Técnicas de Imagem de Sincronização Respiratória/métodos , Cirurgia Assistida por Computador/métodos , Simulação por Computador , Humanos , Movimento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Med Image Comput Comput Assist Interv ; 10(Pt 1): 575-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18051105

RESUMO

Cardiac arrhythmias are increasingly being treated using ablation procedures. Development of fast electrophysiological models and estimation of parameters related to conduction pathologies can aid in the investigation of better treatment strategies during Radio-frequency ablations. We present a fast electrophysiological model incorporating anisotropy of the cardiac tissue. A global-local estimation procedure is also outlined to estimate a hidden parameter (apparent electrical conductivity) present in the model. The proposed model is tested on synthetic and real data derived using XMR imaging. We demonstrate a qualitative match between the estimated conductivity parameter and possible pathology locations. This approach opens up possibilities to directly integrate modelling in the intervention room.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Sistema de Condução Cardíaco/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Modelos Cardiovasculares , Radiografia Intervencionista/métodos , Cirurgia Assistida por Computador/métodos , Anisotropia , Simulação por Computador , Condutividade Elétrica , Sistema de Condução Cardíaco/anatomia & histologia , Sistema de Condução Cardíaco/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA