RESUMO
STAT6 is an attractive therapeutic target for human cancers and other human diseases. Starting from a STAT6 ligand with Ki = 3.5 µM binding affinity, we obtained AK-068 with Ki = 6 nM to STAT6 and at least >85-fold binding selectivity over STAT5. Using AK-068 and cereblon ligands, we discovered AK-1690 as the first, potent and selective PROTAC STAT6 degrader. AK-1690 effectively induces degradation of STAT6 protein in cells with DC50 values of as low as 1 nM while showing minimal effect on other STAT members up to 10 µM. A single dose of AK-1690 effectively depletes STAT6 in mouse tissues. Determination of the first cocrystal structure of STAT6 in complex with AK-1690 provides a structural basis for their interactions. AK-1690 is a powerful tool with which to investigate the roles of STAT6 in human diseases and biological processes and a promising lead compound for further optimization.
RESUMO
Mutations in RNA splicing factor genes including SF3B1, U2AF1, SRSF2, and ZRSR2 have been reported to contribute to development of myeloid neoplasms including myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML). Chemical tools targeting cells carrying these mutant genes remain limited and underdeveloped. Among the four proteins, mutant U2AF1 (U2AF1mut) acquires an altered 3' splice site selection preference and co-operates with the wild-type U2AF1 (U2AF1wt) to change various gene isoform patterns to support MDS cells survival and proliferation. U2AF1 mutations in MDS cells are always heterozygous and the cell viability is reduced when exposed to additional insult affecting U2AF1wt function. To investigate if the pharmacological inhibition of U2AF1wt function can provoke drug-induced vulnerability of cells harboring U2AF1 mut , we conducted a fragment-based library screening campaign to discover compounds targeting the U2AF homology domain (UHM) in U2AF1 that is required for the formation of the U2AF1/U2AF2 complex to define the 3' splice site. The most promising hit (SF1-8) selectively inhibited growth of leukemia cell lines overexpressingU2AF1 mut and human primary MDS cells carrying U2AF1 mut . RNA-seq analysis of K562-U2AF1mut following treatment with SF1-8 further revealed alteration of isoform patterns for a set of proteins that impair or rescue pathways associated with endocytosis, intracellular vesicle transport, and secretion. Our data suggested that further optimization of SF1-8 is warranted to obtain chemical probes that can be used to evaluate the therapeutic concept of inducing lethality to U2AF1 mut cells by inhibiting the U2AF1wt protein.
RESUMO
Hematopoietic cell transplantation (HCT) is a proven and potentially curable therapy for hematological malignancies and inherited hematological disease. The main risk of HCT is the development of graft versus host disease (GVHD) acquired in up to 50% of patients. Upregulation of soluble ST2 (sST2) is a key clinical biomarker for GVHD prognosis and was shown to be a potential therapeutic target for GVHD. Agents targeting sST2 to reduce the sST2 level after HCT have the potential to mitigate GVHD progression. Here, we report 32 (or XY52) as the lead ST2 inhibitor from our optimization campaign. XY52 had improved inhibitory activity and metabolic stability in vitro and in vivo. XY52 suppressed proinflammatory T-cell proliferation while increasing regulatory T cells in vitro. In a clinically relevant GVHD model, a 21-day prophylactic regimen of XY52 reduced plasma sST2 and IFN-γ levels and GVHD score and extended survival in mice. XY52 represented a significant improvement over our previous compound, iST2-1, and further optimization of XY52 is warranted. The small-molecule ST2 inhibitors can potentially be used as a biomarker-guided therapy for mitigating GVHD in future clinical applications.
RESUMO
[This corrects the article DOI: 10.1021/acsmedchemlett.2c00537.].
RESUMO
RNA splicing is a biological process to generate mature mRNA (mRNA) by removing introns and annexing exons in the nascent RNA transcript and is executed by a multiprotein complex called spliceosome. To aid RNA splicing, a class of splicing factors use an atypical RNA recognition domain (UHM) to bind with U2AF ligand motifs (ULMs) in proteins to form modules that recognize splice sites and splicing regulatory elements on mRNA. Mutations of UHM containing splicing factors have been found frequently in myeloid neoplasms. To profile the selectivity of UHMs for inhibitor development, we established binding assays to measure the binding activities between UHM domains and ULM peptides and a set of small-molecule inhibitors. Additionally, we computationally analyzed the targeting potential of the UHM domains by small-molecule inhibitors. Our study provided the binding assessment of UHM domains to diverse ligands that may guide development of selective UHM domain inhibitors in the future.
RESUMO
An elevated plasma level of soluble ST2 (sST2) is a risk biomarker for graft-versus-host disease (GVHD) and death in patients receiving hematopoietic cell transplantation (HCT). sST2 functions as a trap for IL-33 and amplifies the pro-inflammatory type 1 and 17 response while suppressing the tolerogenic type 2 and regulatory T cells activation during GVHD development. We previously identified small-molecule ST2 inhibitors particularly iST2-1 that reduces plasma sST2 levels and improved survival in two animal models. Here, we reported the structure-activity relationship of the furanylmethylpyrrolidine-based ST2 inhibitors based on iST2-1. Based on the biochemical AlphaLISA assay, we improved the activity of iST2-1 by 6-fold (â¼6 µM in IC50 values) in the inhibition of ST2/IL-33 and confirmed the activities of the compounds in a cellular reporter assay. To determine the inhibition of the alloreactivity in vitro, we used the mixed lymphocyte reaction assay to demonstrate that our ST2 inhibitors decreased CD4+ and CD8+ T cells proliferation and increased Treg population. The data presented in this work are critical to the development of ST2 inhibitors in future.
Assuntos
Doença Enxerto-Hospedeiro , Animais , Linfócitos T CD8-Positivos/metabolismo , Furanos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Pirrolidinas/farmacologia , Relação Estrutura-AtividadeRESUMO
Cytokine signaling initiated by the binding of the cytokine receptors to cytokines plays important roles in immune regulation and diseases. Structurally, cytokine receptors interact with cytokines via an extensive, rugged interface that represents a challenge in inhibitor development. Our computational analysis has previously indicated that butyric acid, mimicking acidic residues, preferentially binds to sites in ST2 (Stimulation-2) that interact with acidic residues of IL33, the endogenous cytokine for ST2. To investigate if a charged group in small molecules facilitates ligand binding to ST2, we developed a biochemical homogeneous time resolved fluorescence assay to determine the inhibition of ST2/IL33 binding by five molecules containing an aromatic ring and a charged group. Three molecules, including niacin, salicylic acid, and benzamidine, exhibit inhibition activities at millimolar concentrations. We further employed the computational cosolvent mapping analysis to identify a shared mode of interaction between niacin, salicylic acid, and ST2. The mode of interaction was further confirmed by four analogous compounds that exhibited similar or improved activities. Our study provided the evidence of inhibition of ST2 and IL33 binding by salicylic acid and analogs. The results suggest that biological activity of salicylic acid may be partly mediated through modulating extracellular cytokine receptors and cytokine interaction.
Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Citocinas , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Ácido Salicílico/farmacologiaRESUMO
Embryonic ectoderm development (EED) is a promising therapeutic target for human cancers and other diseases. We report herein the discovery of exceptionally potent and efficacious EED inhibitors. By conformational restriction of a previously reported EED inhibitor, we obtained a potent lead compound. Further optimization of the lead yielded exceptionally potent EED inhibitors. The best compound EEDi-5273 binds to EED with an IC50 value of 0.2 nM and inhibits the KARPAS422 cell growth with an IC50 value of 1.2 nM. It demonstrates an excellent PK and ADME profile, and its oral administration leads to complete and persistent tumor regression in the KARPAS422 xenograft model with no signs of toxicity. Co-crystal structures of two potent EED inhibitors with EED provide a solid structural basis for their high-affinity binding. EEDi-5273 is a promising EED inhibitor for further advanced preclinical development for the treatment of human cancer and other human diseases.
Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Administração Oral , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/patologia , Relação Estrutura-AtividadeRESUMO
Targeting the menin-MLL protein-protein interaction is being pursued as a new therapeutic strategy for the treatment of acute leukemia carrying MLL-rearrangements (MLLr leukemia). Herein, we report M-1121, a covalent and orally active inhibitor of the menin-MLL interaction capable of achieving complete and persistent tumor regression. M-1121 establishes covalent interactions with Cysteine 329 located in the MLL binding pocket of menin and potently inhibits growth of acute leukemia cell lines carrying MLL translocations with no activity in cell lines with wild-type MLL. Consistent with the mechanism of action, M-1121 drives dose-dependent down-regulation of HOXA9 and MEIS1 gene expression in the MLL-rearranged MV4;11 leukemia cell line. M-1121 is orally bioavailable and shows potent antitumor activity in vivo with tumor regressions observed at tolerated doses in the MV4;11 subcutaneous and disseminated models of MLL-rearranged leukemia. Together, our findings support development of an orally active covalent menin inhibitor as a new therapy for MLLr leukemia.
Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Modelos Moleculares , Estrutura Molecular , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-AtividadeRESUMO
Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. We report herein our extensive in vitro and in vivo evaluations of SD-91, the product of the hydrolysis of our previously reported STAT3 degrader SD-36. SD-91 binds to STAT3 protein with a high affinity and displays >300-fold selectivity over other STAT family protein members. SD-91 potently and effectively induces degradation of STAT3 protein and displays a high selectivity over other STAT members and >7000 non-STAT proteins in cells. A single administration of SD-91 selectively depletes STAT3 protein in tumor tissues with a persistent effect. SD-91 achieves complete and long-lasting tumor regression in the MOLM-16 xenograft model in mice even with weekly administration. Hence, SD-91 is a potent, highly selective, and efficacious STAT3 degrader for extensive evaluations for the treatment of human cancers and other diseases for which STAT3 plays a key role.
RESUMO
Cullin-RING E3 ligases (CRLs) regulate the turnover of approximately 20% of mammalian cellular proteins. Neddylation of individual cullin proteins is essential for the activation of each CRL. We report herein the discovery of DI-1548 and DI-1859 as two potent, selective and covalent DCN1 inhibitors. These inhibitors selectively inhibit neddylation of cullin 3 in cells at low nanomolar concentrations and are 2-3 orders of magnitude more potent than our previously reported reversible DCN1 inhibitor. Mass spectrometric analysis and co-crystal structures reveal that these compounds employ a unique mechanism of covalent bond formation with DCN1. DI-1859 induces a robust increase of NRF2 protein, a CRL3 substrate, in mouse liver and effectively protects mice from acetaminophen-induced liver damage. Taken together, this study demonstrates the therapeutic potential of selective inhibition of cullin neddylation.
Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Proteínas Culina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Acetaminofen/administração & dosagem , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Proteína NEDD8/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Processamento de Proteína Pós-Traducional/efeitos dos fármacosRESUMO
Inhibition of embryonic ectoderm development (EED) is a new cancer therapeutic strategy. Herein, we report our discovery of EEDi-5285 as an exceptionally potent, efficacious, and orally active EED inhibitor. EEDi-5285 binds to the EED protein with an IC50 value of 0.2 nM and inhibits cell growth with IC50 values of 20 pM and 0.5 nM in the Pfeiffer and KARPAS422 lymphoma cell lines, respectively, carrying an EZH2 mutation. EEDi-5285 is approximately 100 times more potent than EED226 in binding to EED and >300 times more potent than EED226 in inhibition of cell growth in the KARPAS422 cell line. EEDi-5285 has excellent pharmacokinetics and achieves complete and durable tumor regression in the KARPAS422 xenograft model in mice with oral administration. The cocrystal structure of EEDi-5285 in a complex with EED defines the precise structural basis for their high binding affinity. EEDi-5285 is the most potent and efficacious EED inhibitor reported to date.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/química , Bibliotecas de Moléculas Pequenas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Disponibilidade Biológica , Linhagem Celular Tumoral , Cristalografia por Raios X , Histonas/metabolismo , Humanos , Linfoma/tratamento farmacológico , Linfoma/patologia , Camundongos SCID , Complexo Repressor Polycomb 2/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Targeting the menin-MLL protein-protein interaction is a new therapeutic strategy for the treatment of acute leukemia carrying MLL fusion (MLL leukemia). We describe herein the structure-based optimization of a class of covalent menin inhibitors, which led to the discovery of M-808 (16) as a highly potent and efficacious covalent menin inhibitor. M-808 effectively inhibits leukemia cell growth at low nanomolar concentrations and is capable of achieving partial tumor regression in an MV4;11 xenograft tumor model in mice at a well-tolerated dose schedule. Determination of the co-crystal structure of M-808 in complex with menin provides a structural basis for their high-affinity, covalent interactions. M-808 represents a promising, covalent menin inhibitor for further optimization and evaluation toward developing a new therapy for the treatment of MLL leukemia.
Assuntos
Antineoplásicos/uso terapêutico , Azetidinas/uso terapêutico , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Azetidinas/síntese química , Azetidinas/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos SCID , Estrutura Molecular , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Anti-apoptotic Bcl-2 family proteins are overexpressed in a wide spectrum of cancers and have become well validated therapeutic targets. Cancer cells display survival dependence on individual or subsets of anti-apoptotic proteins that could be effectively targeted by multimodal inhibitors. We designed a 2,5-substituted benzoic acid scaffold that displayed equipotent binding to Mcl-1 and Bfl-1. Structure-based design was guided by several solved cocrystal structures with Mcl-1, leading to the development of compound 24, which binds both Mcl-1 and Bfl-1 with Ki values of 100 nM and shows appreciable selectivity over Bcl-2/Bcl-xL. The selective binding profile of 24 was translated to on-target cellular activity in model lymphoma cell lines. These studies lay a foundation for developing more advanced dual Mcl-1/Bfl-1 inhibitors that have potential to provide greater single agent efficacy and broader coverage to combat resistance in several types of cancer than selective Mcl-1 inhibitors alone.
Assuntos
Antineoplásicos/farmacologia , Ácido Benzoico/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ácido Benzoico/química , Linhagem Celular Tumoral , Humanos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor/metabolismo , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Androgen receptor (AR) is a validated therapeutic target for the treatment of metastatic castration-resistant prostate cancer (mCRPC). We report herein our design, synthesis, and biological characterization of highly potent small-molecule proteolysis targeting chimera (PROTAC) AR degraders using a potent AR antagonist and E3 ligase ligands with weak binding affinities to VHL protein. Our study resulted in the discovery of 11 (ARD-266), which effectively induces degradation of AR protein in AR-positive (AR+) LNCaP, VCaP, and 22Rv1 prostate cancer cell lines with DC50 values of 0.2-1 nM. ARD-266 is capable of reducing the AR protein level by >95% in these AR+ prostate cancer cell lines and effectively reduces AR-regulated gene expression suppression. For the first time, we demonstrated that an E3 ligand with micromolar binding affinity to its E3 ligase complex can be successfully employed for the design of highly potent and efficient PROTAC degraders and this finding may have a significant implication for the field of PROTAC research.
Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Descoberta de Drogas , Piperidinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteólise/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Antagonistas de Receptores de Andrógenos/química , Proliferação de Células , Desenho de Fármacos , Humanos , Ligantes , Masculino , Piperidinas/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Androgênicos/química , Bibliotecas de Moléculas Pequenas/química , Células Tumorais Cultivadas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Here we report the discovery of SD-36, a small-molecule degrader of STAT3. SD-36 potently induces the degradation of STAT3 protein in vitro and in vivo and demonstrates high selectivity over other STAT members. Induced degradation of STAT3 results in a strong suppression of its transcription network in leukemia and lymphoma cells. SD-36 inhibits the growth of a subset of acute myeloid leukemia and anaplastic large-cell lymphoma cell lines by inducing cell-cycle arrest and/or apoptosis. SD-36 achieves complete and long-lasting tumor regression in multiple xenograft mouse models at well-tolerated dose schedules. Degradation of STAT3 protein, therefore, is a promising cancer therapeutic strategy.
Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Camundongos , Proteólise/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor and an attractive therapeutic target for cancer and other human diseases. Despite 20 years of persistent research efforts, targeting STAT3 has been very challenging. We report herein the structure-based discovery of potent small-molecule STAT3 degraders based upon the proteolysis targeting chimera (PROTAC) concept. We first designed SI-109 as a potent, small-molecule inhibitor of the STAT3 SH2 domain. Employing ligands for cereblon/cullin 4A E3 ligase and SI-109, we obtained a series of potent PROTAC STAT3 degraders, exemplified by SD-36. SD-36 induces rapid STAT3 degradation at low nanomolar concentrations in cells and fails to degrade other STAT proteins. SD-36 achieves nanomolar cell growth inhibitory activity in leukemia and lymphoma cell lines with high levels of phosphorylated STAT3. A single dose of SD-36 results in complete STAT3 protein degradation in xenograft tumor tissue and normal mouse tissues. SD-36 achieves complete and long-lasting tumor regression in the Molm-16 xenograft tumor model at well-tolerated dose-schedules. SD-36 is a potent, selective, and efficacious STAT3 degrader.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Azocinas/química , Desenho de Fármacos , Descoberta de Drogas , Indóis/química , Indóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Organofosfonatos/química , Proteólise/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Animais , Antineoplásicos/farmacocinética , Apoptose , Azocinas/farmacocinética , Azocinas/farmacologia , Proliferação de Células , Feminino , Humanos , Indóis/farmacocinética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos SCID , Estrutura Molecular , Organofosfonatos/farmacocinética , Organofosfonatos/farmacologia , Conformação Proteica , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/química , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Inhibition of the menin-mixed lineage leukemia (MLL) protein-protein interaction is a promising new therapeutic strategy for the treatment of acute leukemia carrying MLL fusion (MLL leukemia). We describe herein our structure-based design, synthesis, and evaluation of a new class of small-molecule inhibitors of the menin-MLL interaction (hereafter called menin inhibitors). Our efforts have resulted in the discovery of highly potent menin inhibitors, as exemplified by compound 42 (M-89). M-89 binds to menin with a Kd value of 1.4 nM and effectively engages cellular menin protein at low nanomolar concentrations. M-89 inhibits cell growth in the MV4;11 and MOLM-13 leukemia cell lines carrying MLL fusion with IC50 values of 25 and 55 nM, respectively, and demonstrates >100-fold selectivity over the HL-60 leukemia cell line lacking MLL fusion. The determination of a co-crystal structure of M-89 in a complex with menin provides the structural basis for their high-affinity interaction. Further optimization of M-89 may lead to a new class of therapy for the treatment of MLL leukemia.
Assuntos
Descoberta de Drogas/métodos , Leucemia Mieloide/tratamento farmacológico , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Doença Aguda , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Células HL-60 , Humanos , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Modelos Químicos , Estrutura Molecular , Proteína de Leucina Linfoide-Mieloide/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-AtividadeRESUMO
The estrogen receptor (ER) is a validated target for the treatment of estrogen receptor-positive (ER+) breast cancer. Here, we describe the design, synthesis, and extensive structure-activity relationship (SAR) studies of small-molecule ERα degraders based on the proteolysis targeting chimeras (PROTAC) concept. Our efforts have resulted in the discovery of highly potent and effective PROTAC ER degraders, as exemplified by ERD-308 (32). ERD-308 achieves DC50 (concentration causing 50% of protein degradation) values of 0.17 and 0.43 nM in MCF-7 and T47D ER+ breast cancer cell lines, respectively, and induces >95% of ER degradation at concentrations as low as 5 nM in both cell lines. Significantly, ERD-308 induces more complete ER degradation than fulvestrant, the only approved selective ER degrader (SERD), and is more effective in inhibition of cell proliferation than fulvestrant in MCF-7 cells. Further optimization of ERD-308 may lead to a new therapy for advanced ER+ breast cancer.
Assuntos
Antineoplásicos/farmacologia , Dipeptídeos/farmacologia , Pirrolidinas/farmacologia , Receptores de Estrogênio/metabolismo , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/síntese química , Dipeptídeos/química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Proteólise , Pirrolidinas/síntese química , Pirrolidinas/química , Receptores de Estrogênio/química , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Ubiquitina-Proteína Ligases/metabolismoRESUMO
One obstacle in de novo protein design is the vast sequence space that needs to be searched through to obtain functional proteins. We developed a new method using structural profiles created from evolutionarily related proteins to constrain the simulation search process, with functions specified by atomic-level ligand-protein binding interactions. The approach was applied to redesigning the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP), whose primary function is to suppress the cell death by inhibiting caspase-9 activity; however, the function of the wild-type XIAP can be eliminated by the binding of Smac peptides. Isothermal calorimetry and luminescence assay reveal that the designed XIAP domains can bind strongly with the Smac peptides but do not significantly inhibit the caspase-9 proteolytic activity in vitro compared with the wild-type XIAP protein. Detailed mutation assay experiments suggest that the binding specificity in the designs is essentially determined by the interplay of structural profile and physical interactions, which demonstrates the potential to modify apoptosis pathways through computational design.