Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cardiovasc Digit Health J ; 5(3): 115-121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989042

RESUMO

Background: Fatal coronary heart disease (FCHD) is often described as sudden cardiac death (affects >4 million people/year), where coronary artery disease is the only identified condition. Electrocardiographic artificial intelligence (ECG-AI) models for FCHD risk prediction using ECG data from wearable devices could enable wider screening/monitoring efforts. Objectives: To develop a single-lead ECG-based deep learning model for FCHD risk prediction and assess concordance between clinical and Apple Watch ECGs. Methods: An FCHD single-lead ("lead I" from 12-lead ECGs) ECG-AI model was developed using 167,662 ECGs (50,132 patients) from the University of Tennessee Health Sciences Center. Eighty percent of the data (5-fold cross-validation) was used for training and 20% as a holdout. Cox proportional hazards (CPH) models incorporating ECG-AI predictions with age, sex, and race were also developed. The models were tested on paired clinical single-lead and Apple Watch ECGs from 243 St. Jude Lifetime Cohort Study participants. The correlation and concordance of the predictions were assessed using Pearson correlation (R), Spearman correlation (ρ), and Cohen's kappa. Results: The ECG-AI and CPH models resulted in AUC = 0.76 and 0.79, respectively, on the 20% holdout and AUC = 0.85 and 0.87 on the Atrium Health Wake Forest Baptist external validation data. There was moderate-strong positive correlation between predictions (R = 0.74, ρ = 0.67, and κ = 0.58) when tested on the 243 paired ECGs. The clinical (lead I) and Apple Watch predictions led to the same low/high-risk FCHD classification for 99% of the participants. CPH prediction correlation resulted in an R = 0.81, ρ = 0.76, and κ = 0.78. Conclusion: Risk of FCHD can be predicted from single-lead ECGs obtained from wearable devices and are statistically concordant with lead I of a 12-lead ECG.

2.
Genes (Basel) ; 15(4)2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674355

RESUMO

Inhaled corticosteroids (ICS) are efficacious in the treatment of asthma, which affects more than 300 million people in the world. While genome-wide association studies have identified genes involved in differential treatment responses to ICS in asthma, few studies have evaluated the effects of combined rare and common variants on ICS response among children with asthma. Among children with asthma treated with ICS with whole exome sequencing (WES) data in the PrecisionLink Biobank (91 White and 20 Black children), we examined the effect and contribution of rare and common variants with hospitalizations or emergency department visits. For 12 regions previously associated with asthma and ICS response (DPP10, FBXL7, NDFIP1, TBXT, GLCCI1, HDAC9, TBXAS1, STAT6, GSDMB/ORMDL3, CRHR1, GNGT2, FCER2), we used the combined sum test for the sequence kernel association test (SKAT) adjusting for age, sex, and BMI and stratified by race. Validation was conducted in the Biorepository and Integrative Genomics (BIG) Initiative (83 White and 134 Black children). Using a Bonferroni threshold for the 12 regions tested (i.e., 0.05/12 = 0.004), GSDMB/ORMDL3 was significantly associated with ICS response for the combined effect of rare and common variants (p-value = 0.003) among White children in the PrecisionLink Biobank and replicated in the BIG Initiative (p-value = 0.02). Using WES data, the combined effect of rare and common variants for GSDMB/ORMDL3 was associated with ICS response among asthmatic children in the PrecisionLink Biobank and replicated in the BIG Initiative. This proof-of-concept study demonstrates the power of biobanks of pediatric real-life populations in asthma genomic investigations.


Assuntos
Corticosteroides , Asma , Gasderminas , Proteínas de Membrana , Humanos , Asma/tratamento farmacológico , Asma/genética , Criança , Feminino , Masculino , Corticosteroides/uso terapêutico , Corticosteroides/administração & dosagem , Administração por Inalação , Proteínas de Membrana/genética , Estudo de Associação Genômica Ampla , Adolescente , Pré-Escolar , Sequenciamento do Exoma , Polimorfismo de Nucleotídeo Único
3.
Front Cardiovasc Med ; 11: 1360238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500752

RESUMO

Introduction: More than 76,000 women die yearly from preeclampsia and hypertensive disorders of pregnancy. Early diagnosis and management of preeclampsia can improve outcomes for both mother and baby. In this study, we developed artificial intelligence models to detect and predict preeclampsia from electrocardiograms (ECGs) in point-of-care settings. Methods: Ten-second 12-lead ECG data was obtained from two large health care settings: University of Tennessee Health Science Center (UTHSC) and Atrium Health Wake Forest Baptist (AHWFB). UTHSC data was split into 80% training and 20% holdout data. The model used a modified ResNet convolutional neural network, taking one-dimensional raw ECG signals comprising 12 channels as an input, to predict risk of preeclampsia. Sub-analyses were performed to assess the predictive accuracy for preeclampsia prediction within 30, 60, or 90 days before diagnosis. Results: The UTHSC cohort included 904 ECGs from 759 females (78.8% African American) with a mean ± sd age of 27.3 ± 5.0 years. The AHWFB cohort included 817 ECGs from 141 females (45.4 African American) with a mean ± sd age of 27.4 ± 5.9 years. The cross-validated ECG-AI model yielded an AUC (95% CI) of 0.85 (0.77-0.93) on UTHSC holdout data, and an AUC (95% CI) of 0.81 (0.77-0.84) on AHWFB data. The sub-analysis of different time windows before preeclampsia prediction resulted in AUCs (95% CI) of 0.92 (0.84-1.00), 0.89 (0.81-0.98) and 0.90 (0.81-0.98) when tested on ECGs 30 days, 60 days and 90 days, respectively, before diagnosis. When assessed on early onset preeclampsia (preeclampsia diagnosed at <34 weeks of pregnancy), the model's AUC (95% CI) was 0.98 (0.89-1.00). Discussion: We conclude that preeclampsia can be identified with high accuracy via application of AI models to ECG data.

4.
Am J Obstet Gynecol MFM ; 6(4): 101337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447673

RESUMO

BACKGROUND: This study used electrocardiogram data in conjunction with artificial intelligence methods as a noninvasive tool for detecting peripartum cardiomyopathy. OBJECTIVE: This study aimed to assess the efficacy of an artificial intelligence-based heart failure detection model for peripartum cardiomyopathy detection. STUDY DESIGN: We first built a deep-learning model for heart failure detection using retrospective data at the University of Tennessee Health Science Center. Cases were adult and nonpregnant female patients with a heart failure diagnosis; controls were adult nonpregnant female patients without heart failure. The model was then tested on an independent cohort of pregnant women at the University of Tennessee Health Science Center with or without peripartum cardiomyopathy. We also tested the model in an external cohort of pregnant women at Atrium Health Wake Forest Baptist. Key outcomes were assessed using the area under the receiver operating characteristic curve. We also repeated our analysis using only lead I electrocardiogram as an input to assess the feasibility of remote monitoring via wearables that can capture single-lead electrocardiogram data. RESULTS: The University of Tennessee Health Science Center heart failure cohort comprised 346,339 electrocardiograms from 142,601 patients. In this cohort, 60% of participants were Black and 37% were White, with an average age (standard deviation) of 53 (19) years. The heart failure detection model achieved an area under the curve of 0.92 on the holdout set. We then tested the ability of the heart failure model to detect peripartum cardiomyopathy in an independent University of Tennessee Health Science Center cohort of pregnant women and an external Atrium Health Wake Forest Baptist cohort of pregnant women. The independent University of Tennessee Health Science Center cohort included 158 electrocardiograms from 115 patients; our deep-learning model achieved an area under the curve of 0.83 (0.77-0.89) for this data set. The external Atrium Health Wake Forest Baptist cohort involved 80 electrocardiograms from 43 patients; our deep-learning model achieved an area under the curve of 0.94 (0.91-0.98) for this data set. For identifying peripartum cardiomyopathy diagnosed ≥10 days after delivery, the model achieved an area under the curve of 0.88 (0.81-0.94) for the University of Tennessee Health Science Center cohort and of 0.96 (0.93-0.99) for the Atrium Health Wake Forest Baptist cohort. When we repeated our analysis by building a heart failure detection model using only lead-I electrocardiograms, we obtained similarly high detection accuracies, with areas under the curve of 0.73 and 0.93 for the University of Tennessee Health Science Center and Atrium Health Wake Forest Baptist cohorts, respectively. CONCLUSION: Artificial intelligence can accurately detect peripartum cardiomyopathy from electrocardiograms alone. A simple electrocardiographic artificial intelligence-based peripartum screening could result in a timelier diagnosis. Given that results with 1-lead electrocardiogram data were similar to those obtained using all 12 leads, future studies will focus on remote screening for peripartum cardiomyopathy using smartwatches that can capture single-lead electrocardiogram data.


Assuntos
Inteligência Artificial , Cardiomiopatias , Aprendizado Profundo , Eletrocardiografia , Insuficiência Cardíaca , Período Periparto , Complicações Cardiovasculares na Gravidez , Humanos , Feminino , Gravidez , Eletrocardiografia/métodos , Adulto , Cardiomiopatias/diagnóstico , Cardiomiopatias/fisiopatologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/epidemiologia , Complicações Cardiovasculares na Gravidez/diagnóstico , Complicações Cardiovasculares na Gravidez/fisiopatologia , Curva ROC
5.
Stud Health Technol Inform ; 310: 1501-1502, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269716

RESUMO

Radiation therapy interruptions drive cancer treatment failures; they represent an untapped opportunity for improving outcomes and narrowing treatment disparities. This research reports on the early development of the X-CART platform, which uses explainable AI to model cancer treatment outcome metrics based on high-dimensional associations with our local social determinants of health dataset to identify and explain causal pathways linking social disadvantage with increased radiation therapy interruptions.


Assuntos
Benchmarking , Neoplasias , Neoplasias/radioterapia
6.
JMIR Form Res ; 7: e50210, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966885

RESUMO

BACKGROUND: Health promotion can empower populations to gain more control over their well-being by using digital interventions that focus on preventing the root causes of diseases. Digital platforms for personalized health coaching can improve health literacy and information-seeking behavior, leading to better health outcomes. Personal health records have been designed to enhance patients' self-management of a disease or condition. Existing personal health records have been mostly designed and deployed as a supplementary service that acts as views into electronic health records. OBJECTIVE: We aim to overcome some of the limitations of electronic health records. This study aims to design and develop a personal health library (PHL) that generates personalized recommendations for human papillomavirus (HPV) vaccine promotion and cancer prevention. METHODS: We have designed a proof-of-concept prototype of the Digital Personal Health Librarian, which leverages machine learning; natural language processing; and several innovative technological infrastructures, including the Semantic Web, social linked data, web application programming interfaces, and hypermedia-based discovery, to generate a personal health knowledge graph. RESULTS: We have designed and implemented a proof-of-the-concept prototype to showcase and demonstrate how the PHL can be used to store an individual's health data, for example, a personal health knowledge graph. This is integrated with web-scale knowledge to support HPV vaccine promotion and prevent HPV-associated cancers among adolescents and their caregivers. We also demonstrated how the Digital Personal Health Librarian uses the PHL to provide evidence-based insights and knowledge-driven explanations that are personalized and inform health decision-making. CONCLUSIONS: Digital platforms such as the PHL can be instrumental in improving precision health promotion and education strategies that address population-specific needs (ie, health literacy, digital competency, and language barriers) and empower individuals by facilitating knowledge acquisition to make healthy choices.

7.
Sci Rep ; 13(1): 12290, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516770

RESUMO

Little is known about electrocardiogram (ECG) markers of Parkinson's disease (PD) during the prodromal stage. The aim of the study was to build a generalizable ECG-based fully automatic artificial intelligence (AI) model to predict PD risk during the prodromal stage, up to 5 years before disease diagnosis. This case-control study included samples from Loyola University Chicago (LUC) and University of Tennessee-Methodist Le Bonheur Healthcare (MLH). Cases and controls were matched according to specific characteristics (date, age, sex and race). Clinical data were available from May, 2014 onward at LUC and from January, 2015 onward at MLH, while the ECG data were available as early as 1990 in both institutes. PD was denoted by at least two primary diagnostic codes (ICD9 332.0; ICD10 G20) at least 30 days apart. PD incidence date was defined as the earliest of first PD diagnostic code or PD-related medication prescription. ECGs obtained at least 6 months before PD incidence date were modeled to predict a subsequent diagnosis of PD within three time windows: 6 months-1 year, 6 months-3 years, and 6 months-5 years. We applied a novel deep neural network using standard 10-s 12-lead ECGs to predict PD risk at the prodromal phase. This model was compared to multiple feature engineering-based models. Subgroup analyses for sex, race and age were also performed. Our primary prediction model was a one-dimensional convolutional neural network (1D-CNN) that was built using 131 cases and 1058 controls from MLH, and externally validated on 29 cases and 165 controls from LUC. The model was trained on 90% of the MLH data, internally validated on the remaining 10% and externally validated on LUC data. The best performing model resulted in an external validation AUC of 0.67 when predicting future PD at any time between 6 months and 5 years after the ECG. Accuracy increased when restricted to ECGs obtained within 6 months to 3 years before PD diagnosis (AUC 0.69) and was highest when predicting future PD within 6 months to 1 year (AUC 0.74). The 1D-CNN model based on raw ECG data outperformed multiple models built using more standard ECG feature engineering approaches. These results demonstrate that a predictive model developed in one cohort using only raw 10-s ECGs can effectively classify individuals with prodromal PD in an independent cohort, particularly closer to disease diagnosis. Standard ECGs may help identify individuals with prodromal PD for cost-effective population-level early detection and inclusion in disease-modifying therapeutic trials.


Assuntos
Aprendizado Profundo , Doença de Parkinson , Humanos , Inteligência Artificial , Estudos de Casos e Controles , Doença de Parkinson/diagnóstico , Sintomas Prodrômicos , Eletrocardiografia
8.
Sci Rep ; 12(1): 21473, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509794

RESUMO

Clinicians frequently observe hemodynamic changes preceding elevated intracranial pressure events. We employed a machine learning approach to identify novel and differentially expressed features associated with elevated intracranial pressure events in children with severe brain injuries. Statistical features from physiologic data streams were derived from non-overlapping 30-min analysis windows prior to 21 elevated intracranial pressure events; 200 records without elevated intracranial pressure events were used as controls. Ten Monte Carlo simulations with training/testing splits provided performance benchmarks for 4 machine learning approaches. XGBoost yielded the best performing predictive models. Shapley Additive Explanations analyses demonstrated that a majority of the top 20 contributing features consistently derived from blood pressure data streams up to 240 min prior to elevated intracranial events. The best performing prediction model was using the 30-60 min analysis window; for this model, the area under the receiver operating characteristic window using XGBoost was 0.82 (95% CI 0.81-0.83); the area under the precision-recall curve was 0.24 (95% CI 0.23-0.25), above the expected baseline of 0.1. We conclude that physiomarkers discernable by machine learning are concentrated within blood pressure and intracranial pressure data up to 4 h prior to elevated intracranial pressure events.


Assuntos
Hipertensão Intracraniana , Pressão Intracraniana , Criança , Humanos , Pressão Intracraniana/fisiologia , Pressão Sanguínea , Hipertensão Intracraniana/diagnóstico , Curva ROC , Aprendizado de Máquina
9.
Front Public Health ; 10: 789999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35570956

RESUMO

Objectives: Of the Social Determinants of Health (SDoH), we evaluated socioeconomic and neighborhood-related factors which may affect children with medical complexity (CMC) admitted to a Pediatric Intensive Care Unit (PICU) in Shelby County, Tennessee with severe sepsis and their association with PICU length of stay (LOS). We hypothesized that census tract-level socioeconomic and neighborhood factors were associated with prolonged PICU LOS in CMC admitted with severe sepsis in the underserved community. Methods: This single-center retrospective observational study included CMC living in Shelby County, Tennessee admitted to the ICU with severe sepsis over an 18-month period. Severe sepsis CMC patients were identified using an existing algorithm incorporated into the electronic medical record at a freestanding children's hospital. SDoH information was collected and analyzed using patient records and publicly available census-tract level data, with ICU length of stay as the primary outcome. Results: 83 encounters representing 73 patients were included in the analysis. The median PICU LOS was 9.04 days (IQR 3.99-20.35). The population was 53% male with a median age of 4.1 years (IQR 1.96-12.02). There were 57 Black/African American patients (68.7%) and 85.5% had public insurance. Based on census tract-level data, about half (49.4%) of the CMC severe sepsis population lived in census tracts classified as suffering from high social vulnerability. There were no statistically significant relationships between any socioeconomic and neighborhood level factors and PICU LOS. Conclusion: Pediatric CMC severe sepsis patients admitted to the PICU do not have prolonged lengths of ICU stay related to socioeconomic and neighborhood-level SDoH at our center. A larger sample with the use of individual-level screening would need to be evaluated for associations between social determinants of health and PICU outcomes of these patients.


Assuntos
Sepse , Determinantes Sociais da Saúde , Criança , Pré-Escolar , Estado Terminal , Feminino , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica , Tempo de Internação , Masculino , Sepse/epidemiologia
10.
J Parkinsons Dis ; 12(1): 341-351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34602502

RESUMO

BACKGROUND: Parkinson's disease (PD) is a chronic, disabling neurodegenerative disorder. OBJECTIVE: To predict a future diagnosis of PD using questionnaires and simple non-invasive clinical tests. METHODS: Participants in the prospective Kuakini Honolulu-Asia Aging Study (HAAS) were evaluated biannually between 1995-2017 by PD experts using standard diagnostic criteria. Autopsies were sought on all deaths. We input simple clinical and risk factor variables into an ensemble-tree based machine learning algorithm and derived models to predict the probability of developing PD. We also investigated relationships of predictive models and neuropathologic features such as nigral neuron density. RESULTS: The study sample included 292 subjects, 25 of whom developed PD within 3 years and 41 by 5 years. 116 (46%) of 251 subjects not diagnosed with PD underwent autopsy. Light Gradient Boosting Machine modeling of 12 predictors correctly classified a high proportion of individuals who developed PD within 3 years (area under the curve (AUC) 0.82, 95%CI 0.76-0.89) or 5 years (AUC 0.77, 95%CI 0.71-0.84). A large proportion of controls who were misclassified as PD had Lewy pathology at autopsy, including 79%of those who died within 3 years. PD probability estimates correlated inversely with nigral neuron density and were strongest in autopsies conducted within 3 years of index date (r = -0.57, p < 0.01). CONCLUSION: Machine learning can identify persons likely to develop PD during the prodromal period using questionnaires and simple non-invasive tests. Correlation with neuropathology suggests that true model accuracy may be considerably higher than estimates based solely on clinical diagnosis.


Assuntos
Doença de Parkinson , Humanos , Aprendizado de Máquina , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Sintomas Prodrômicos , Estudos Prospectivos , Fatores de Risco
11.
PLoS One ; 16(9): e0257056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34559819

RESUMO

We present an interpretable machine learning algorithm called 'eARDS' for predicting ARDS in an ICU population comprising COVID-19 patients, up to 12-hours before satisfying the Berlin clinical criteria. The analysis was conducted on data collected from the Intensive care units (ICU) at Emory Healthcare, Atlanta, GA and University of Tennessee Health Science Center, Memphis, TN and the Cerner® Health Facts Deidentified Database, a multi-site COVID-19 EMR database. The participants in the analysis consisted of adults over 18 years of age. Clinical data from 35,804 patients who developed ARDS and controls were used to generate predictive models that identify risk for ARDS onset up to 12-hours before satisfying the Berlin criteria. We identified salient features from the electronic medical record that predicted respiratory failure among this population. The machine learning algorithm which provided the best performance exhibited AUROC of 0.89 (95% CI = 0.88-0.90), sensitivity of 0.77 (95% CI = 0.75-0.78), specificity 0.85 (95% CI = 085-0.86). Validation performance across two separate health systems (comprising 899 COVID-19 patients) exhibited AUROC of 0.82 (0.81-0.83) and 0.89 (0.87, 0.90). Important features for prediction of ARDS included minimum oxygen saturation (SpO2), standard deviation of the systolic blood pressure (SBP), O2 flow, and maximum respiratory rate over an observational window of 16-hours. Analyzing the performance of the model across various cohorts indicates that the model performed best among a younger age group (18-40) (AUROC = 0.93 [0.92-0.94]), compared to an older age group (80+) (AUROC = 0.81 [0.81-0.82]). The model performance was comparable on both male and female groups, but performed significantly better on the severe ARDS group compared to the mild and moderate groups. The eARDS system demonstrated robust performance for predicting COVID19 patients who developed ARDS at least 12-hours before the Berlin clinical criteria, across two independent health systems.


Assuntos
COVID-19 , Aprendizado de Máquina , Modelos Biológicos , Síndrome do Desconforto Respiratório , SARS-CoV-2/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/fisiopatologia , Estado Terminal , Feminino , Humanos , Masculino , Sistemas Computadorizados de Registros Médicos , Pessoa de Meia-Idade , Oxigênio/sangue , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/fisiopatologia , Taxa Respiratória , Fatores de Risco
12.
Comput Biol Med ; 131: 104255, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33639353

RESUMO

Early detection of sepsis can be life-saving. Machine learning models have shown great promise in early sepsis prediction when applied to patient physiological data in real-time. However, these existing models often under-perform in terms of positive predictive value, an important metric in clinical settings. This is especially the case when the models are applied to data with less than 50% sepsis prevalence, reflective of the incidence rate of sepsis on the floor or in the ICU. In this study, we develop HeMA, a hierarchically enriched machine learning approach for managing false alarms in real time, and conduct a case study for early sepsis prediction. Specifically, we develop a two-stage framework, where a first stage machine learning model is paired with statistical tests, particularly Kolmogorov-Smirnov tests, in the second stage, to predict whether a patient would develop sepsis. Compared with machine learning models alone, the framework results in an increase in specificity and positive predictive value, without compromising F1 score. In particular, the framework shows improved performance when applied to data with 50% and 25% sepsis prevalence, collected from a large hospital system in the US, resulting in up to 18% and 7% increase in specificity and positive predictive value, respectively. Despite the significant improvements observed, and although F1 score is not negatively affected, because of the up to 6% decrease in sensitivity, further improvements and pilot studies may be necessary before deploying the framework in a clinical setting. Finally, external validation conducted using a publicly available dataset produces similar results, validating that the proposed framework is generalizable.


Assuntos
Aprendizado de Máquina , Sepse , Diagnóstico Precoce , Humanos , Valor Preditivo dos Testes , Sepse/diagnóstico , Sepse/epidemiologia
13.
Shock ; 56(1): 58-64, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991797

RESUMO

BACKGROUND: Sepsis is a life-threatening condition with high mortality rates. Early detection and treatment are critical to improving outcomes. Our primary objective was to develop artificial intelligence capable of predicting sepsis earlier using a minimal set of streaming physiological data in real time. METHODS AND FINDINGS: A total of 29,552 adult patients were admitted to the intensive care unit across five regional hospitals in Memphis, Tenn, over 18 months from January 2017 to July 2018. From these, 5,958 patients were selected after filtering for continuous (minute-by-minute) physiological data availability. A total of 617 (10.4%) patients were identified as sepsis cases, using the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) criteria. Physiomarkers, a set of signal processing features, were derived from five physiological data streams including heart rate, respiratory rate, and blood pressure (systolic, diastolic, and mean), captured every minute from the bedside monitors. A support vector machine classifier was used for classification. The model accurately predicted sepsis up to a mean and 95% confidence interval of 17.4 ±â€Š0.22 h before sepsis onset, with an average test accuracy of 83.0% (average sensitivity, specificity, and area under the receiver operating characteristics curve of 0.757, 0.902, and 0.781, respectively). CONCLUSIONS: This study demonstrates that salient physiomarkers derived from continuous bedside monitoring are temporally and differentially expressed in septic patients. Using this information, minimalistic artificial intelligence models can be developed to predict sepsis earlier in critically ill patients.


Assuntos
Inteligência Artificial , Sepse/fisiopatologia , Idoso , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Tempo
14.
Am Surg ; 87(4): 549-556, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33108886

RESUMO

BACKGROUND: Centralized care for patients with pancreatic cancer is associated with longer survival. We hypothesized that increased travel distance from home is associated with increased survival for pancreatic cancer patients. METHODS: The National Cancer Database user file for all pancreatic cancer patients was investigated from 2004 through 2015. Distance from the patients' zip code to the treating facility was determined. Survival was investigated using the Kaplan-Meier method. Cox hazard ratios (CoxHRs) were determined based on stage of disease, distance traveled for care, and clinical factors. RESULTS: 340 780 patients were identified. In the average age of 68 ± 12 years, 51% were male and 83% were Caucasian. For all stages of cancer, longer survival was associated with traveling farther (P < .001). The survival advantage was longer for Caucasians than African Americans (3.7 months vs. 2.6 months, P < .001) Travel was associated with a 13% decrease in risk of death (P < .001). Even controlling for the pathologic stage, traveling farther was associated with decreased risk of death (CoxHR = .91, P < .001). DISCUSSION: Traveling for care is associated with improved survival for pancreatic cancer patients. While a selection bias may exist, the fact that all stages of patients investigated benefited suggests that this is a real phenomenon.


Assuntos
Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/terapia , Idoso , Idoso de 80 Anos ou mais , Correlação de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA