Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1865(4): 854-866, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342157

RESUMO

The alternative respiratory chain (aRC), comprising the alternative NADH dehydrogenases (NDX) and quinone oxidases (AOX), is found in microbes, fungi and plants, where it buffers stresses arising from restrictions on electron flow in the oxidative phosphorylation system. The aRC enzymes are also found in species belonging to most metazoan phyla, including some chordates and arthropods species, although not in vertebrates or in Drosophila. We postulated that the aRC enzymes might be deployed to alleviate pathological stresses arising from mitochondrial dysfunction in a wide variety of disease states. However, before such therapies can be contemplated, it is essential to understand the effects of aRC enzymes on cell metabolism and organismal physiology. Here we report and discuss new findings that shed light on the functions of the aRC enzymes in animals, and the unexpected benefits and detriments that they confer on model organisms. In Ciona intestinalis, the aRC is induced by hypoxia and by sulfide, but is unresponsive to other environmental stressors. When expressed in Drosophila, AOX results in impaired survival under restricted nutrition, in addition to the previously reported male reproductive anomalies. In contrast, it confers cold resistance to developing and adult flies, and counteracts cell signaling defects that underlie developmental dysmorphologies. The aRC enzymes may also influence lifespan and stress resistance more generally, by eliciting or interfering with hormetic mechanisms. In sum, their judicious use may lead to major benefits in medicine, but this will require a thorough characterization of their properties and physiological effects.


Assuntos
Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Quinona Redutases/metabolismo , Animais , Respiração Celular , Ciona intestinalis , Proteínas de Drosophila/genética , Drosophila melanogaster , Transporte de Elétrons , Mitocôndrias/enzimologia , NADH Desidrogenase/genética , Quinona Redutases/genética
2.
Cell Biol Int ; 42(6): 664-669, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29384231

RESUMO

The mitochondrial respiratory chain in vertebrates and arthropods is different from that of most other eukaryotes because they lack alternative enzymes that provide electron transfer pathways additional to the oxidative phosphorylation (OXPHOS) system. However, the use of diverse experimental models, such as human cells in culture, Drosophila melanogaster and the mouse, has demonstrated that the transgenic expression of these alternative enzymes can impact positively many phenotypes associated with human mitochondrial and other cellular dysfunction, including those typically presented in complex IV deficiencies, Parkinson's, and Alzheimer's. In addition, these enzymes have recently provided extremely valuable data on how, when, and where reactive oxygen species, considered by many as "by-products" of OXPHOS, can contribute to animal longevity. It has also been shown that the expression of the alternative enzymes is thermogenic in cultured cells, causes reproductive defects in flies, and enhances the deleterious phenotype of some mitochondrial disease models. Therefore, all the reported beneficial effects must be considered with caution, as these enzymes have been proposed to be deployed in putative gene therapies to treat human diseases. Here, we present a brief review of the scientific data accumulated over the past decade that show the benefits and the risks of introducing alternative branches of the electron transport into mammalian and insect mitochondria, and we provide a perspective on the future of this research field.


Assuntos
Animais Geneticamente Modificados/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Humanos , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA