Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 540: 117-127, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38278472

RESUMO

Ethanol is one of the most commonly used and abused substances in the world. While the behavioral effects of ethanol are well characterized, mechanisms of its action on neurons and synapses remain elusive. Prior research suggested that ethanol could affect neurons by interfering with metabolism of biologically active molecules, such as adenosine. Here, we explored the involvement of adenosine A1 receptors (A1R) in mediating ethanol's effects on synaptic transmission to layer 2/3 pyramidal neurons of visual cortex using wild type (WT) and A1R knock-out (KO) mice. Ethanol differentially affected excitatory and inhibitory transmission in WT and KO mice. In slices from WT mice ethanol had heterogeneous effects on excitatory transmission (facilitation, suppression or no change), with no net change. Ethanol's effects remained heterogeneous during acute blockade of A1Rs with a selective antagonist DPCPX. However, in A1RKO mice ethanol consistently suppressed excitatory transmission, with no cases of enhancement observed. Inhibitory transmission was suppressed by ethanol in both WT and A1RKO mice. At both excitatory and inhibitory synapses, changes of response amplitude correlated with changes of paired-pulse ratio, suggesting involvement of presynaptic mechanisms. We conclude that A1Rs are not involved in mediating effects of ethanol on synaptic transmission in mouse visual cortex. However, A1Rs are necessary for development of mechanisms mediating facilitation at some excitatory synapses. Our results add evidence for the diversity of ethanol's effects and mechanisms of action on synaptic transmission in different brain structures, and even in the same brain area (visual cortex) in different species, rats vs mice.


Assuntos
Etanol , Córtex Visual , Ratos , Camundongos , Animais , Etanol/farmacologia , Adenosina/metabolismo , Camundongos Knockout , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Receptores Purinérgicos P1/metabolismo , Córtex Visual/fisiologia
2.
Front Cell Neurosci ; 14: 204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33100968

RESUMO

Inhibitory neurons play a fundamental role in the normal operation of neuronal networks. Diverse types of inhibitory neurons serve vital functions in cortical networks, such as balancing excitation and taming excessive activity, organizing neuronal activity in spatial and temporal patterns, and shaping response selectivity. Serving these, and a multitude of other functions effectively requires fine-tuning of inhibition, mediated by synaptic plasticity. Plasticity of inhibitory systems can be mediated by changes at inhibitory synapses and/or by changes at excitatory synapses at inhibitory neurons. In this review, we consider that latter locus: plasticity at excitatory synapses to inhibitory neurons. Despite the fact that plasticity of excitatory synaptic transmission to interneurons has been studied in much less detail than in pyramids and other excitatory cells, an abundance of forms and mechanisms of plasticity have been observed in interneurons. Specific requirements and rules for induction, while exhibiting a broad diversity, could correlate with distinct sources of excitatory inputs and distinct types of inhibitory neurons. One common requirement for the induction of plasticity is the rise of intracellular calcium, which could be mediated by a variety of ligand-gated, voltage-dependent, and intrinsic mechanisms. The majority of the investigated forms of plasticity can be classified as Hebbian-type associative plasticity. Hebbian-type learning rules mediate adaptive changes of synaptic transmission. However, these rules also introduce intrinsic positive feedback on synaptic weight changes, making plastic synapses and learning networks prone to runaway dynamics. Because real inhibitory neurons do not express runaway dynamics, additional plasticity mechanisms that counteract imbalances introduced by Hebbian-type rules must exist. We argue that weight-dependent heterosynaptic plasticity has a number of characteristics that make it an ideal candidate mechanism to achieve homeostatic regulation of synaptic weight changes at excitatory synapses to inhibitory neurons.

3.
J Neurosci ; 39(35): 6865-6878, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31300522

RESUMO

Inhibition in neuronal networks of the neocortex serves a multitude of functions, such as balancing excitation and structuring neuronal activity in space and time. Plasticity of inhibition is mediated by changes at both inhibitory synapses, as well as excitatory synapses on inhibitory neurons. Using slices from visual cortex of young male rats, we describe a novel form of plasticity of excitatory synapses on inhibitory neurons, weight-dependent heterosynaptic plasticity. Recordings from connected pyramid-to-interneuron pairs confirm that postsynaptic activity alone can induce long-term changes at synapses that were not presynaptically active during the induction, i.e., heterosynaptic plasticity. Moreover, heterosynaptic changes can accompany homosynaptic plasticity induced in inhibitory neurons by conventional spike-timing-dependent plasticity protocols. In both fast-spiking (FS) and non-FS neurons, heterosynaptic changes were weight-dependent, because they correlated with initial paired-pulse ratio (PPR), indicative of initial strength of a synapse. Synapses with initially high PPR, indicative of low release probability ("weak" synapses), had the tendency to be potentiated, while synapses with low initial PPR ("strong" synapses) tended to depress or did not change. Interestingly, the net outcome of heterosynaptic changes was different in FS and non-FS neurons. FS neurons expressed balanced changes, with gross average (n = 142) not different from control. Non-FS neurons (n = 66) exhibited net potentiation. This difference could be because of higher initial PPR in the non-FS neurons. We propose that weight-dependent heterosynaptic plasticity may counteract runaway dynamics of excitatory inputs imposed by Hebbian-type learning rules and contribute to fine-tuning of distinct aspects of inhibitory function mediated by FS and non-FS neurons in neocortical networks.SIGNIFICANCE STATEMENT Dynamic balance of excitation and inhibition is fundamental for operation of neuronal networks. Fine-tuning of such balance requires synaptic plasticity. Knowledge about diverse forms of plasticity operating in excitatory and inhibitory neurons is necessary for understanding normal function and causes of dysfunction of the nervous system. Here we show that excitatory inputs to major archetypal classes of neocortical inhibitory neurons, fast-spiking (FS) and non-fast-spiking (non-FS), express a novel type of plasticity, weight-dependent heterosynaptic plasticity, which accompanies the induction of Hebbian-type changes. This novel form of plasticity may counteract runaway dynamics at excitatory synapses to inhibitory neurons imposed by Hebbian-type learning rules and contribute to fine-tuning of diverse aspects of inhibitory function mediated by FS and non-FS neurons in neocortical networks.


Assuntos
Potenciais de Ação/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Ratos , Ratos Wistar , Sinapses/fisiologia
4.
Front Integr Neurosci ; 11: 16, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824389

RESUMO

Mice deficient in the extracellular matrix glycoprotein tenascin-C (TNC-/-) express a deficit in specific forms of hippocampal synaptic plasticity, which involve the L-type voltage-gated Ca2+ channels (L-VGCCs). The mechanisms underlying this deficit and its functional implications for learning and memory have not been investigated. In line with previous findings, we report on impairment in theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in TNC-/- mice in the CA1 hippocampal region and its rescue by the L-VGCC activator Bay K-8644. We further found that the overall pattern of L-VGCC expression in the hippocampus in TNC-/- mice was normal, but Western blot analysis results uncovered upregulated expression of the Cav1.2 and Cav1.3 α-subunits of L-VGCCs. However, these L-VGCCs were not fully functional in TNC-/- mice, as demonstrated by Ca2+ imaging, which revealed a reduction of nifedipine-sensitive Ca2+ transients in CA1 pyramidal neurons. TNC-/- mice showed normal learning and memory in the contextual fear conditioning paradigm but impaired extinction of conditioned fear responses. Systemic injection of the L-VGCC blockers nifedipine and diltiazem into wild-type mice mimicked the impairment of fear extinction observed in TNC-/- mice. The deficiency in TNC-/- mice substantially occluded the effects of these drugs. Our results suggest that TNC-mediated modulation of L-VGCC activity is essential for fear extinction.

5.
Eur J Neurosci ; 45(10): 1333-1342, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28263415

RESUMO

Ethanol is one of the most commonly used substances in the world. Behavioral effects of alcohol are well described, however, cellular mechanisms of its action are poorly understood. There is an apparent contradiction between measurable behavioral changes produced by low concentrations of ethanol, and lack of evidence of synaptic changes at these concentrations. Furthermore, effects of ethanol on synaptic transmission in the neocortex are poorly understood. Here, we set to determine effects of ethanol on excitatory synaptic transmission in the neocortex. We show that 1-50 mm ethanol suppresses excitatory synaptic transmission to layer 2/3 pyramidal neurons in rat visual cortex in a concentration-dependent manner. To the best of our knowledge, this is the first demonstration of the effects of very low concentrations of ethanol (from 1 mm) on synaptic transmission in the neocortex. We further show that a selective antagonist of A1 adenosine receptors, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), blocks effects of 1-10 mm ethanol on synaptic transmission. However, the reduction in excitatory postsynaptic potential amplitude by 50 mm ethanol was not affected by DPCPX. We propose that ethanol depresses excitatory synaptic transmission in the neocortex by at least two mechanisms, engaged at different concentrations: low concentrations of ethanol reduce synaptic transmission via A1 R-dependent mechanism and involve presynaptic changes, while higher concentrations activate additional, adenosine-independent mechanisms with predominantly postsynaptic action. Involvement of adenosine signaling in mediating effects of low concentrations of ethanol may have important implications for understanding alcohol's effects on brain function, and provide a mechanistic explanation to the interaction between alcohol and caffeine.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Potenciais Pós-Sinápticos Excitadores , Córtex Visual/efeitos dos fármacos , Antagonistas do Receptor A1 de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Wistar , Córtex Visual/fisiologia , Xantinas/farmacologia
6.
J Neurosci ; 37(6): 1439-1452, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28028196

RESUMO

Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A1 receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity.SIGNIFICANCE STATEMENT Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning.


Assuntos
Adenosina/fisiologia , Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Receptor A1 de Adenosina/fisiologia , Córtex Visual/fisiologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Animais , Homeostase/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Córtex Visual/efeitos dos fármacos
7.
J Neurosci ; 36(34): 8842-55, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27559167

RESUMO

UNLABELLED: Hebbian-type learning rules, which underlie learning and refinement of neuronal connectivity, postulate input specificity of synaptic changes. However, theoretical analyses have long appreciated that additional mechanisms, not restricted to activated synapses, are needed to counteract positive feedback imposed by Hebbian-type rules on synaptic weight changes and to achieve stable operation of learning systems. The biological basis of such mechanisms has remained elusive. Here we show that, in layer 2/3 pyramidal neurons from slices of visual cortex of rats, synaptic changes induced at individual synapses by spike timing-dependent plasticity do not strictly follow the input specificity rule. Spike timing-dependent plasticity is accompanied by changes in unpaired synapses: heterosynaptic plasticity. The direction of heterosynaptic changes is weight-dependent, with balanced potentiation and depression, so that the total synaptic input to a cell remains preserved despite potentiation or depression of individual synapses. Importantly, this form of heterosynaptic plasticity is induced at unpaired synapses by the same pattern of postsynaptic activity that induces homosynaptic changes at paired synapses. In computer simulations, we show that experimentally observed heterosynaptic plasticity can indeed serve the theoretically predicted role of robustly preventing runaway dynamics of synaptic weights and activity. Moreover, it endows model neurons and networks with essential computational features: enhancement of synaptic competition, facilitation of the development of specific intrinsic connectivity, and the ability for relearning. We conclude that heterosynaptic plasticity is an inherent property of plastic synapses, crucial for normal operation of learning systems. SIGNIFICANCE STATEMENT: We show that spike timing-dependent plasticity in L2/L3 pyramids from rat visual cortex is accompanied by plastic changes in unpaired synapses. These heterosynaptic changes are weight-dependent and balanced: individual synapses expressed significant LTP or LTD, but the average over all synapses did not change. Thus, the rule of input specificity breaks down at individual synapses but holds for responses averaged over many inputs. In model neurons and networks, this experimentally characterized form of heterosynaptic plasticity prevents runaway dynamics of synaptic weights and activity, enhances synaptic competition, facilitates development of specific intrinsic connectivity, and enables relearning. This new form of heterosynaptic plasticity represents the cellular basis of a theoretically postulated mechanism, which is additional to Hebbian-type rules, and is necessary for stable operation of learning systems.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Modelos Neurológicos , Células Piramidais/fisiologia , Sinapses/fisiologia , Córtex Visual/citologia , Animais , Biofísica , Estimulação Elétrica , Técnicas In Vitro , Redes Neurais de Computação , Análise de Componente Principal , Ratos
8.
Artigo em Inglês | MEDLINE | ID: mdl-26217218

RESUMO

Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity-heterosynaptic plasticity-represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s) should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule) have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days) changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve a homeostatic role during on-going synaptic plasticity.

9.
J Physiol ; 593(4): 825-41, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25565160

RESUMO

KEY POINTS: Adenosine might be the most widespread neuromodulator in the brain, but its effects on inhibitory transmission in the neocortex are not understood. Here we report that adenosine suppresses inhibitory transmission to layer 2/3 pyramidal neurons via activation of presynaptic A1 receptors. We present evidence for functional A2A receptors, which have a weak modulatory effect on the A1-mediated suppression, at about 50% of inhibitory synapses at pyramidal neurons. Adenosine suppresses excitatory and inhibitory transmission to a different extent, and can change the excitation-inhibition balance at a set of synapses bidirectionally, but on average the balance was maintained during application of adenosine. These results suggest that changes of adenosine concentration may lead to differential modulation of excitatory-inhibitory balance in pyramidal neurons, and thus redistribution of local spotlights of activity in neocortical circuits, while preserving the balanced state of the whole network. ABSTRACT: Adenosine might be the most widespread neuromodulator in the brain: as a metabolite of ATP it is present in every neuron and glial cell. However, how adenosine affects operation of neurons and networks in the neocortex is poorly understood, mostly because modulation of inhibitory transmission by adenosine has been so little studied. To clarify adenosine's role at inhibitory synapses, and in excitation-inhibition balance in pyramidal neurons, we recorded pharmacologically isolated inhibitory responses, compound excitatory-inhibitory responses and spontaneous events in layer 2/3 pyramidal neurons in slices from rat visual cortex. We show that adenosine (1-150 µm) suppresses inhibitory transmission to these neurons in a concentration-dependent and reversible manner. The suppression was mediated by presynaptic A1 receptors (A1Rs) because it was blocked by a selective A1 antagonist, DPCPX, and associated with changes of release indices: paired-pulse ratio, inverse coefficient of variation and frequency of miniature events. At some synapses (12 out of 24) we found evidence for A2ARs: their blockade led to a small but significant increase of the magnitude of adenosine-mediated suppression. This effect of A2AR blockade was not observed when A1Rs were blocked, suggesting that A2ARs do not have their own effect on transmission, but can modulate the A1R-mediated suppression. At both excitatory and inhibitory synapses, the magnitude of A1R-mediated suppression and A2AR-A1R interaction expressed high variability, suggesting high heterogeneity of synapses in the sensitivity to adenosine. Adenosine could change the balance between excitation and inhibition at a set of inputs to a neuron bidirectionally, towards excitation or towards inhibition. On average, however, these bidirectional changes cancelled each other, and the overall balance of excitation and inhibition was maintained during application of adenosine. These results suggest that changes of adenosine concentration may lead to differential modulation of excitatory-inhibitory balance in pyramidal neurons, and thus redistribution of local spotlights of activity in neocortical circuits, while preserving the balanced state of the whole network.


Assuntos
Adenosina/fisiologia , Neocórtex/fisiologia , Córtex Visual/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Células Piramidais/fisiologia , Ratos Wistar , Receptor A1 de Adenosina/fisiologia , Receptor A2A de Adenosina/fisiologia , Transmissão Sináptica/fisiologia
10.
Neuroscientist ; 20(5): 483-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24727248

RESUMO

Plasticity is a universal property of synapses. It is expressed in a variety of forms mediated by a multitude of mechanisms. Here we consider two broad kinds of plasticity that differ in their requirement for presynaptic activity during the induction. Homosynaptic plasticity occurs at synapses that were active during the induction. It is also called input specific or associative, and it is governed by Hebbian-type learning rules. Heterosynaptic plasticity can be induced by episodes of strong postsynaptic activity also at synapses that were not active during the induction, thus making any synapse at a cell a target to heterosynaptic changes. Both forms can be induced by typical protocols used for plasticity induction and operate on the same time scales but have differential computational properties and play different roles in learning systems. Homosynaptic plasticity mediates associative modifications of synaptic weights. Heterosynaptic plasticity counteracts runaway dynamics introduced by Hebbian-type rules and balances synaptic changes. It provides learning systems with stability and enhances synaptic competition. We conclude that homosynaptic and heterosynaptic plasticity represent complementary properties of modifiable synapses, and both are necessary for normal operation of neural systems with plastic synapses.


Assuntos
Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais
11.
J Neurosci ; 33(40): 15915-29, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24089497

RESUMO

Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity--Hebbian and heterosynaptic--may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories.


Assuntos
Córtex Auditivo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores/fisiologia , Modelos Neurológicos , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
12.
J Physiol ; 590(10): 2253-71, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22371479

RESUMO

Associative Hebbian-type synaptic plasticity underlies the mechanisms of learning and memory; however, Hebbian learning rules lead to runaway dynamics of synaptic weights and lack mechanisms for synaptic competition.Heterosynaptic plasticity may solve these problems by complementing plasticity at synapses that were active during the induction, with opposite-sign changes at non-activated synapses. In visual cortex, a potential candidate mechanism for normalization is plasticity induced by a purely postsynaptic protocol, intracellular tetanization. Here we asked if intracellular tetanization can induce long-term plasticity in auditory cortex. We recorded excitatory postsynaptic potentials (EPSPs) of regular (n =76) and all-or-none (n =24) type in layer 2/3 pyramidal cells in slices from rat auditory cortex. After intracellular tetanization, 32 of 76 regular inputs (42%) showed long-term depression, 21 inputs (28%) showed potentiation and 23 inputs (30%) did not change. The direction of plasticity correlated with the initial release probability: inputs with initially low release probability tended to be potentiated, while inputs with high release probability tended to be depressed. Thus, intracellular tetanization had a normalizing effect on synaptic efficacy. Induction of plasticity by intracellular tetanization required a rise of intracellular [Ca(2+)], because it was impaired by chelating intracellular calcium with EGTA. The long-term changes induced by intracellular tetanization involved both pre and postsynaptic mechanisms. EPSP amplitude changes were correlated with changes of release indices: paired-pulse ratio and the inverse of the coefficient of variation (CV(-2)). Furthermore at some all-or-none synapses, changes of averaged response amplitude were correlated with a change of the failure rate, without a change of the synaptic potency, measured as averaged amplitude of successful responses. Presynaptic components of plastic changes were abolished in experiments with blockade of NO-synthesis and spread, indicating involvement of NO signalling. These results demonstrate that the ability of purely postsynaptic challenges to induce plasticity is a general property of pyramidal neurons of both auditory and visual cortices.


Assuntos
Córtex Auditivo/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Cálcio/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Óxido Nítrico/fisiologia , Ratos , Ratos Wistar
13.
Exp Brain Res ; 199(3-4): 377-90, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19499213

RESUMO

Ongoing learning continuously shapes the distribution of neurons' synaptic weights in a system with plastic synapses. Plasticity may change the weights of synapses that were active during the induction-homosynaptic changes, but also may change synapses not active during the induction-heterosynaptic changes. Here we will argue, that heterosynaptic and homosynaptic plasticity are complementary processes, and that heterosynaptic plasticity might accompany homosynaptic plasticity induced by typical pairing protocols. Synapses are not uniform in their susceptibility for plastic changes, but have predispositions to undergo potentiation or depression, or not to change. Predisposition is one of the factors determining the direction and magnitude of homo- and heterosynaptic changes. Heterosynaptic changes which take place according to predispositions for plasticity may provide a useful mechanism(s) for homeostasis of neurons' synaptic weights and extending the lifetime of memory traces during ongoing learning in neuronal networks.


Assuntos
Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Humanos , Neocórtex/citologia , Potenciais Sinápticos/fisiologia
14.
PLoS One ; 3(4): e1962, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18398478

RESUMO

The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics.


Assuntos
Potenciais de Ação , Neocórtex/metabolismo , Neurônios/metabolismo , Animais , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores , Potenciais da Membrana , Modelos Biológicos , Modelos Neurológicos , Modelos Estatísticos , Técnicas de Patch-Clamp , Ratos , Caramujos , Especificidade da Espécie , Transmissão Sináptica
15.
J Neurophysiol ; 94(1): 363-76, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15758049

RESUMO

Neocortical synapses express differential dynamic properties. When activated at high frequencies, the amplitudes of the subsequent postsynaptic responses may increase or decrease, depending on the stimulation frequency and on the properties of that particular synapse. Changes in the synaptic dynamics can dramatically affect the communication between nerve cells. Motivated by this question, we studied dynamic properties at synapses to layer 2/3 pyramidal cells with intracellular recordings in slices of rat visual cortex. Synaptic responses were evoked by trains of test stimuli, which consisted of 10 pulses at different frequencies (5-40 Hz). Test stimulation was applied either without any adaptation (control) or 2 s after an adaptation stimulus, which consisted of 4 s stimulation of these same synapses at 10, 25, or 40 Hz. The synaptic parameters were then assessed from fitting the data with a model of synaptic dynamics. Our estimates of the synaptic parameters in control, without adaptation are broadly consistent with previous studies. Adaptation led to pronounced changes of synaptic transmission. After adaptation, the amplitude of the response to the first pulse in the test train decreased for several seconds and then recovered back to the control level with a time constant of 2-18 s. Analysis of the data with extended models, which include interaction between different pools of synaptic vesicles, suggests that the decrease of the response amplitude was due to a synergistic action of two factors, decrease of the release probability and depletion of the available transmitter. After a weak (10 Hz) adaptation, the decrease of the response amplitude was accompanied by and correlated with the decrease of the release probability. After a strong adaptation (25 or 40 Hz), the depletion of synaptic resources was the main cause for the reduced response amplitude. Adaptation also led to pronounced changes of the time constants of facilitation and recovery, however, these changes were not uniform in all synapses, and on the population level, the only consistent and significant effect was an acceleration of the recovery after a strong adaptation. Taken together, our results suggest, that apart from decreasing the amplitude of postsynaptic responses, adaptation may produce synapse-specific effects, which could result in a kind of re-distribution of activity within neural networks.


Assuntos
Adaptação Fisiológica/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Córtex Visual/citologia , Animais , Animais Recém-Nascidos , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Técnicas In Vitro , Modelos Neurológicos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Células Piramidais/citologia , Ratos , Ratos Wistar , Sinapses/efeitos da radiação , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/efeitos da radiação , Fatores de Tempo
16.
J Neurosci Res ; 76(4): 481-7, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15114620

RESUMO

Increase of intracellular [Ca(2+)] evoked by action potentials in a cell can induce long-term synaptic plasticity even without concomitant presynaptic stimulation. We used optical recording of the fluorescence of a Ca(2+)-indicator Oregon Green to investigate whether differences in results obtained with modifications of that purely postsynaptic induction protocol could be due to differential Ca(2+) influx. We compared changes of the somatic [Ca(2+)] in layer II-III pyramidal cells in slices of rat visual cortex evoked by bursts of depolarization pulses and long depolarizing steps. During weak depolarizations, the Ca(2+) influx was proportional to the amplitude and duration of the depolarization. With suprathreshold depolarizations, the Ca(2+) influx was proportional to the number of action potentials. Because the burst depolarizations evoked more spikes than did the long duration steps, this burst protocol led to a larger Ca(2+) influx. With all stimulation protocols, the spike-induced Ca(2+) influx was reduced during blockade of N-methyl-D-aspartate (NMDA) receptors. Differences in intracellular [Ca(2+)] increases thus may be one reason for differential effects of purely postsynaptic challenges on synaptic transmission.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Valina/análogos & derivados , Valina/farmacologia , Córtex Visual/citologia , Potenciais de Ação/efeitos dos fármacos , Animais , Estimulação Elétrica/métodos , Corantes Fluorescentes/metabolismo , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Compostos Orgânicos , Técnicas de Patch-Clamp/métodos , Ratos
17.
J Neurophysiol ; 92(1): 212-20, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14999046

RESUMO

The probability of transmitter release at synaptic terminals is one of the key characteristics of communication between nerve cells because it determines both the strength and dynamic properties of synaptic connections. To assess the distribution of the release probabilities at excitatory synapses on supragranular pyramidal cells in rat visual cortex, we have used the MK-801, a blocker of the open N-methyl-d-aspartate (NMDA) receptor-gated channels. With this method, the release probability can be calculated from the time course of the blockade of NMDA-receptor mediated postsynaptic currents in the presence of MK-801. At temperatures >32 degrees C, the distribution of release probabilities covered the range from 0.05 to 0.43 [mean: 0.171 +/- 0.012 (SE), n = 65], being skewed toward low values. When estimated at room temperature (22-25 degrees C), the release probabilities were significantly lower (mean: 0.123 +/- 0.009, n = 54), and almost the whole distribution was restricted to values <0.2. Furthermore, warming from room temperature to >32 degrees C led to a pronounced overshooting increase of the release probability. Taken together, the results of the present study show that release probabilities at synapses formed onto layer 2/3 pyramidal cells in the visual cortex vary significantly, but values >0.3 are rare and the results obtained either at room or variable temperature differ significantly from those made under conditions of constant temperature in the physiological range.


Assuntos
Neocórtex/metabolismo , Neurotransmissores/metabolismo , Sinapses/metabolismo , Temperatura , Animais , Maleato de Dizocilpina/farmacologia , Técnicas In Vitro , Neocórtex/efeitos dos fármacos , Probabilidade , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA