Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 28(9): 1676-1689, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31306512

RESUMO

Free-standing single-layer ß-sheets are extremely rare in naturally occurring proteins, even though ß-sheet motifs are ubiquitous. Here we report the crystal structures of three homologous, single-layer, anti-parallel ß-sheet proteins, comprised of three or four twisted ß-hairpin repeats. The structures reveal that, in addition to the hydrogen bond network characteristic of ß-sheets, additional hydrophobic interactions mediated by small clusters of residues adjacent to the turns likely play a significant role in the structural stability and compensate for the lack of a compact hydrophobic core. These structures enabled identification of a family of secreted proteins that are broadly distributed in bacteria from the human gut microbiome and are putatively involved in the metabolism of complex carbohydrates. A conserved surface patch, rich in solvent-exposed tyrosine residues, was identified on the concave surface of the ß-sheet. These new modular single-layer ß-sheet proteins may serve as a new model system for studying folding and design of ß-rich proteins.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Bactérias/química , Cristalografia por Raios X , Microbioma Gastrointestinal , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica em Folha beta , Dobramento de Proteína , Tirosina/química
2.
Acta Crystallogr D Struct Biol ; 72(Pt 4): 497-511, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27050129

RESUMO

RNA-binding protein 39 (RBM39) is a splicing factor and a transcriptional co-activator of estrogen receptors and Jun/AP-1, and its function has been associated with malignant progression in a number of cancers. The C-terminal RRM domain of RBM39 belongs to the U2AF homology motif family (UHM), which mediate protein-protein interactions through a short tryptophan-containing peptide known as the UHM-ligand motif (ULM). Here, crystal and solution NMR structures of the RBM39-UHM domain, and the crystal structure of its complex with U2AF65-ULM, are reported. The RBM39-U2AF65 interaction was confirmed by co-immunoprecipitation from human cell extracts, by isothermal titration calorimetry and by NMR chemical shift perturbation experiments with the purified proteins. When compared with related complexes, such as U2AF35-U2AF65 and RBM39-SF3b155, the RBM39-UHM-U2AF65-ULM complex reveals both common and discriminating recognition elements in the UHM-ULM binding interface, providing a rationale for the known specificity of UHM-ULM interactions. This study therefore establishes a structural basis for specific UHM-ULM interactions by splicing factors such as U2AF35, U2AF65, RBM39 and SF3b155, and a platform for continued studies of intermolecular interactions governing disease-related alternative splicing in eukaryotic cells.


Assuntos
Complexos Multiproteicos/química , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Fator de Processamento U2AF/química , Cristalografia por Raios X , Humanos , Células Jurkat , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Quaternária de Proteína
3.
Cell ; 165(3): 690-703, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27062925

RESUMO

Pili are proteinaceous polymers of linked pilins that protrude from the cell surface of many bacteria and often mediate adherence and virulence. We investigated a set of 20 Bacteroidia pilins from the human microbiome whose structures and mechanism of assembly were unknown. Crystal structures and biochemical data revealed a diverse protein superfamily with a common Greek-key ß sandwich fold with two transthyretin-like repeats that polymerize into a pilus through a strand-exchange mechanism. The assembly mechanism of the central, structural pilins involves proteinase-assisted removal of their N-terminal ß strand, creating an extended hydrophobic groove that binds the C-terminal donor strands of the incoming pilin. Accessory pilins at the tip and base have unique structural features specific to their location, allowing initiation or termination of the assembly. The Bacteroidia pilus, therefore, has a biogenesis mechanism that is distinct from other known pili and likely represents a different type of bacterial pilus.


Assuntos
Proteínas de Fímbrias/química , Fímbrias Bacterianas , Microbioma Gastrointestinal , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Humanos , Lipoproteínas/química , Lipoproteínas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
4.
Proteins ; 84(3): 316-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26650892

RESUMO

Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, crystal structures of apo-BaiE and its putative product-bound [3-oxo-Δ(4,6) -lithocholyl-Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + ß barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady-state kinetic studies reveal that the BaiE homologs are able to turn over 3-oxo-Δ(4) -bile acid and CoA-conjugated 3-oxo-Δ(4) -bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway.


Assuntos
Proteínas de Bactérias/química , Ácidos Cólicos/química , Clostridium/enzimologia , Hidroliases/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Ácidos Cólicos/biossíntese , Cristalografia por Raios X , Humanos , Hidroliases/genética , Ligação de Hidrogênio , Hidroxilação , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
5.
mBio ; 6(5): e02327-14, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26374125

RESUMO

UNLABELLED: Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (or dl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminal l-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation. IMPORTANCE: Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.


Assuntos
Aminopeptidases/química , Aminopeptidases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínios de Homologia de src , Aminopeptidases/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Especificidade por Substrato
6.
J Struct Biol ; 192(3): 342-348, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416531

RESUMO

The nuclear receptor LRH-1 (Liver Receptor Homolog-1, NR5A2) is a transcription factor that regulates gene expression programs critical for many aspects of metabolism and reproduction. Although LRH-1 is able to bind phospholipids, it is still considered an orphan nuclear receptor (NR) with an unknown regulatory hormone. Our prior cellular and structural studies demonstrated that the signaling phosphatidylinositols PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind and regulate SF-1 (Steroidogenic Factor-1, NR5A1), a close homolog of LRH-1. Here, we describe the crystal structure of human LRH-1 ligand binding domain (LBD) bound by PIP3 - the first phospholipid with a head group endogenous to mammals. We show that the phospholipid hormone binds LRH-1 with high affinity, stabilizing the receptor LBD. While the hydrophobic PIP3 tails (C16/C16) are buried inside the LRH-1 ligand binding pocket, the negatively charged PIP3 head group is presented on the receptor surface, similar to the phosphatidylinositol binding mode observed in the PIP3-SF-1 structure. Thus, data presented in this work reinforce our earlier findings demonstrating that signaling phosphatidylinositols regulate the NR5A receptors LRH-1 and SF-1.


Assuntos
Fosfatidilinositóis/química , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Fator Esteroidogênico 1/ultraestrutura , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Receptor Nuclear Órfão DAX-1/química , Humanos , Modelos Moleculares , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Fator Esteroidogênico 1/química
7.
Proc Natl Acad Sci U S A ; 112(15): 4666-71, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825768

RESUMO

NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein-DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.


Assuntos
Proliferação de Células/genética , Reprogramação Celular/genética , Proteínas de Homeodomínio/genética , Mutação , Células-Tronco Pluripotentes/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Células Cultivadas , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Proteína Homeobox Nanog , Conformação de Ácido Nucleico , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transfecção
8.
Structure ; 22(12): 1799-1809, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25465128

RESUMO

GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Šresolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family.


Assuntos
Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Bacteroides , Cristalografia por Raios X , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Proc Natl Acad Sci U S A ; 111(42): 15054-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288771

RESUMO

The signaling phosphatidylinositol lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP2 and PIP3 show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP3 stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As.


Assuntos
Fosfatidilinositóis/química , Fator Esteroidogênico 1/química , Aminoácidos/química , Animais , Transporte Biológico , Núcleo Celular/metabolismo , Cromatografia , Simulação por Computador , Cristalografia por Raios X , Elétrons , Humanos , Ligantes , Lipídeos/química , Camundongos , Modelos Moleculares , Conformação Molecular , Mutação , Mutação de Sentido Incorreto , Peptídeos/química , Transdução de Sinais , Solventes/química , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Temperatura , Água/química
10.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2640-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286848

RESUMO

The crystal structure of arabinose-5-phosphate isomerase (API) from Bacteroides fragilis (bfAPI) was determined at 1.7 Šresolution and was found to be a tetramer of a single-domain sugar isomerase (SIS) with an endogenous ligand, CMP-Kdo (cytidine 5'-monophosphate-3-deoxy-D-manno-oct-2-ulosonate), bound at the active site. API catalyzes the reversible isomerization of D-ribulose 5-phosphate to D-arabinose 5-phosphate in the first step of the Kdo biosynthetic pathway. Interestingly, the bound CMP-Kdo is neither the substrate nor the product of the reaction catalyzed by API, but corresponds to the end product in the Kdo biosynthetic pathway and presumably acts as a feedback inhibitor for bfAPI. The active site of each monomer is located in a surface cleft at the tetramer interface between three monomers and consists of His79 and His186 from two different adjacent monomers and a Ser/Thr-rich region, all of which are highly conserved across APIs. Structure and sequence analyses indicate that His79 and His186 may play important catalytic roles in the isomerization reaction. CMP-Kdo mimetics could therefore serve as potent and specific inhibitors of API and provide broad protection against many different bacterial infections.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Bacteroides fragilis/química , Aldose-Cetose Isomerases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/química , Histidina/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Açúcares Ácidos/química
11.
Protein Sci ; 23(10): 1380-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044324

RESUMO

Crystal structures of three members (BACOVA_00364 from Bacteroides ovatus, BACUNI_03039 from Bacteroides uniformis and BACEGG_00036 from Bacteroides eggerthii) of the Pfam domain of unknown function (DUF4488) were determined to 1.95, 1.66, and 1.81 Å resolutions, respectively. The protein structures adopt an eight-stranded, calycin-like, ß-barrel fold and bind an endogenous unknown ligand at one end of the ß-barrel. The amino acids interacting with the ligand are not conserved in any other protein of known structure with this particular fold. The size and chemical environment of the bound ligand suggest binding or transport of a small polar molecule(s) as a potential function for these proteins. These are the first structural representatives of a newly defined PF14869 (DUF4488) Pfam family.


Assuntos
Proteínas de Bactérias/química , Bacteroides/metabolismo , Metabolismo dos Carboidratos , Bacteroides/química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência
12.
Protein Sci ; 23(8): 1060-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888348

RESUMO

Pyridoxal-5'-phosphate or PLP, the active form of vitamin B6, is a highly versatile cofactor that participates in a large number of mechanistically diverse enzymatic reactions in basic metabolism. PLP-dependent enzymes account for ∼1.5% of most prokaryotic genomes and are estimated to be involved in ∼4% of all catalytic reactions, making this an important class of enzymes. Here, we structurally and functionally characterize three novel PLP-dependent enzymes from bacteria in the human microbiome: two are from Eubacterium rectale, a dominant, nonpathogenic, fecal, Gram-positive bacteria, and the third is from Porphyromonas gingivalis, which plays a major role in human periodontal disease. All adopt the Type I PLP-dependent enzyme fold and structure-guided biochemical analysis enabled functional assignments as tryptophan, aromatic, and probable phosphoserine aminotransferases.


Assuntos
Eubacterium/enzimologia , Microbiota , Oxirredutases/metabolismo , Porphyromonas gingivalis/enzimologia , Fosfato de Piridoxal/metabolismo , Transaminases/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Oxirredutases/química , Conformação Proteica , Fosfato de Piridoxal/química , Transaminases/química
13.
Proteins ; 82(2): 216-29, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23836456

RESUMO

Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo- and cofactor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of cofactor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the cofactor binding site seems crucial in determining cofactor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2'-phosphate group of NADP(H). Consistent with crystal structures, steady state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat /KM ) of NADP(+) at least an order of magnitude lower than NAD(+) . Substitution of Glu42 with Ala improved specificity toward NADP(+) by 10-fold compared to wild type. The cofactor bound structure uncovered a novel nicotinamide-hydroxyl ion (NAD(+) -OH(-) ) adduct contraposing previously reported adducts. The OH(-) of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2'-hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations, we propose an involvement of NAD(+) -OH(-) adduct in proton relay instead of hydride transfer as noted for previous adducts.


Assuntos
Proteínas de Bactérias/química , Ácidos e Sais Biliares/biossíntese , Clostridium/enzimologia , Hidroxiesteroide Desidrogenases/química , Apoenzimas/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , NAD/química
14.
J Mol Biol ; 426(1): 169-84, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24051416

RESUMO

Tn916-like conjugative transposons carrying antibiotic resistance genes are found in a diverse range of bacteria. Orf14 within the conjugation module encodes a bifunctional cell wall hydrolase CwlT that consists of an N-terminal bacterial lysozyme domain (N-acetylmuramidase, bLysG) and a C-terminal NlpC/P60 domain (γ-d-glutamyl-l-diamino acid endopeptidase) and is expected to play an important role in the spread of the transposons. We determined the crystal structures of CwlT from two pathogens, Staphylococcus aureus Mu50 (SaCwlT) and Clostridium difficile 630 (CdCwlT). These structures reveal that NlpC/P60 and LysG domains are compact and conserved modules, connected by a short flexible linker. The LysG domain represents a novel family of widely distributed bacterial lysozymes. The overall structure and the active site of bLysG bear significant similarity to other members of the glycoside hydrolase family 23 (GH23), such as the g-type lysozyme (LysG) and Escherichia coli lytic transglycosylase MltE. The active site of bLysG contains a unique structural and sequence signature (DxxQSSES+S) that is important for coordinating a catalytic water. Molecular modeling suggests that the bLysG domain may recognize glycan in a similar manner to MltE. The C-terminal NlpC/P60 domain contains a conserved active site (Cys-His-His-Tyr) that appears to be specific to murein tetrapeptide. Access to the active site is likely regulated by isomerism of a side chain atop the catalytic cysteine, allowing substrate entry or product release (open state), or catalysis (closed state).


Assuntos
Elementos de DNA Transponíveis , Hidrolases/química , Sequência de Aminoácidos , Domínio Catalítico , Clostridioides difficile/genética , Cristalografia por Raios X , Hidrolases/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Staphylococcus aureus/genética
15.
Proteins ; 82(1): 164-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23852666

RESUMO

PF10014 is a novel family of 2-oxyglutarate-Fe(2+) -dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the ß-strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site.


Assuntos
Domínio Catalítico/genética , Comamonadaceae/enzimologia , Sequência Conservada/genética , Dioxigenases/química , Modelos Moleculares , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cristalização , Primers do DNA/genética , Dioxigenases/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
16.
Proteins ; 82(6): 1086-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24174223

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas-specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure-based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family.


Assuntos
Proteínas de Bactérias/química , Pseudomonas aeruginosa , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Estrutura Secundária de Proteína , Percepção de Quorum
17.
J Bacteriol ; 195(24): 5555-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123814

RESUMO

Approximately 50% of cell wall peptidoglycan in Gram-negative bacteria is recycled with each generation. The primary substrates used for peptidoglycan biosynthesis and recycling in the cytoplasm are GlcNAc-MurNAc(anhydro)-tetrapeptide and its degradation product, the free tetrapeptide. This complex process involves ∼15 proteins, among which the cytoplasmic enzyme ld-carboxypeptidase A (LdcA) catabolizes the bond between the last two l- and d-amino acid residues in the tetrapeptide to form the tripeptide, which is then utilized as a substrate by murein peptide ligase (Mpl). LdcA has been proposed as an antibacterial target. The crystal structure of Novosphingobium aromaticivorans DSM 12444 LdcA (NaLdcA) was determined at 1.89-Šresolution. The enzyme was biochemically characterized and its interactions with the substrate modeled, identifying residues potentially involved in substrate binding. Unaccounted electron density at the dimer interface in the crystal suggested a potential site for disrupting protein-protein interactions should a dimer be required to perform its function in bacteria. Our analysis extends the identification of functional residues to several other homologs, which include enzymes from bacteria that are involved in hydrocarbon degradation and destruction of coral reefs. The NaLdcA crystal structure provides an alternate system for investigating the structure-function relationships of LdcA and increases the structural coverage of the protagonists in bacterial cell wall recycling.


Assuntos
Carboxipeptidases/química , Carboxipeptidases/metabolismo , Peptidoglicano/metabolismo , Sphingomonadaceae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica
18.
J Biol Chem ; 288(23): 16789-16799, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23572527

RESUMO

DUF2233, a domain of unknown function (DUF), is present in many bacterial and several viral proteins and was also identified in the mammalian transmembrane glycoprotein N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase ("uncovering enzyme" (UCE)). We report the crystal structure of BACOVA_00430, a 315-residue protein from the human gut bacterium Bacteroides ovatus that is the first structural representative of the DUF2233 protein family. A notable feature of this structure is the presence of a surface cavity that is populated by residues that are highly conserved across the entire family. The crystal structure was used to model the luminal portion of human UCE (hUCE), which is involved in targeting of lysosomal enzymes. Mutational analysis of several residues in a highly conserved surface cavity of hUCE revealed that they are essential for function. The bacterial enzyme (BACOVA_00430) has ∼1% of the catalytic activity of hUCE toward the substrate GlcNAc-P-mannose, the precursor of the Man-6-P lysosomal targeting signal. GlcNAc-1-P is a poor substrate for both enzymes. We conclude that, for at least a subset of proteins in this family, DUF2233 functions as a phosphodiester glycosidase.


Assuntos
Proteínas de Bactérias/química , Bacteroides/enzimologia , Diester Fosfórico Hidrolases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Mutagênese , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Homologia Estrutural de Proteína
19.
PLoS One ; 7(9): e43761, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984442

RESUMO

The human nuclear factor related to kappa-B-binding protein (NFRKB) is a 1299-residue protein that is a component of the metazoan INO80 complex involved in chromatin remodeling, transcription regulation, DNA replication and DNA repair. Although full length NFRKB is predicted to be around 65% disordered, comparative sequence analysis identified several potentially structured sections in the N-terminal region of the protein. These regions were targeted for crystallographic studies, and the structure of one of these regions spanning residues 370-495 was determined using the JCSG high-throughput structure determination pipeline. The structure reveals a novel, mostly helical domain reminiscent of the winged-helix fold typically involved in DNA binding. However, further analysis shows that this domain does not bind DNA, suggesting it may belong to a small group of winged-helix domains involved in protein-protein interactions.


Assuntos
Proteínas de Ligação a DNA/química , Fatores de Transcrição Winged-Helix/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalografia por Raios X , Proteínas Culina/química , DNA/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Desnaturação Proteica , Mapas de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Saccharomyces cerevisiae/química , Alinhamento de Sequência , Homologia Estrutural de Proteína , Temperatura
20.
PLoS One ; 7(7): e41359, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844465

RESUMO

Actinomycetes are important bacterial sources of antibiotics and other secondary metabolites. Many antibiotic gene clusters are controlled by pathway-specific activators that act in response to growth conditions. Here we present the crystal structure of an MmyB-like transcription regulator MltR (PDB code 3pxp) (Caur_2278) from Chloroflexus aurantiacus, in complex with a fatty acid (myristic acid). MltR is a distant homolog of the methylenomycin activator MmyB and consists of an Xre-type N-terminal DNA-binding domain and a C-terminal ligand-binding module that is related to the Per-Arnt-Sim (PAS) domain. This structure has enabled identification of a new family of bacterial transcription factors that are distributed predominantly in actinomycetes. Bioinformatics analysis of MltR and other characterized family members suggest that they are likely associated with antibiotic and fatty acid metabolism in actinomycetes. Streptomyces coelicolor SCO4944 is a candidate as an ancestral member of the family. Its ortholog in S. griseus, SGR_6891, is induced by A-factor, a γ-butyrolactone that controls antibiotic production and development, and is adjacent to the A-factor synthase gen, afsA. The location of mltR/mmyB homologs, in particular those adjacent to less well-studied antibiotic-related genes, makes them interesting genetic markers for identifying new antibiotic genes. A model for signal-triggered DNA-binding by MltR is proposed.


Assuntos
Actinomyces/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chloroflexus , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ácido Mirístico/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA