Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20826, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012253

RESUMO

A physical trainer often physically guides a learner's limbs to teach an ideal movement, giving the learner proprioceptive information about the movement to be reproduced later. This instruction requires the learner to perceive kinesthetic information and store the instructed information temporarily. Therefore, (1) proprioceptive acuity to accurately perceive the taught kinesthetics and (2) short-term memory to store the perceived information are two critical functions for reproducing the taught movement. While the importance of proprioceptive acuity and short-term memory has been suggested for active motor learning, little is known about passive motor learning. Twenty-one healthy adults (mean age 25.6 years, range 19-38 years) participated in this study to investigate whether individual learning efficiency in passively guided learning is related to these two functions. Consequently, learning efficiency was significantly associated with short-term memory capacity. In particular, individuals who could recall older sensory stimuli showed better learning efficiency. However, no significant relationship was observed between learning efficiency and proprioceptive acuity. A causal graph model found a direct influence of memory on learning and an indirect effect of proprioceptive acuity on learning via memory. Our findings suggest the importance of a learner's short-term memory for effective passive motor learning.


Assuntos
Memória de Curto Prazo , Desempenho Psicomotor , Adulto , Humanos , Adulto Jovem , Propriocepção , Aprendizagem , Cinestesia
2.
Sci Rep ; 10(1): 11820, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678206

RESUMO

Sports trainers often grasp and move trainees' limbs to give instructions on desired movements, and a merit of this passive training is the transferring of instructions via proprioceptive information. However, it remains unclear how passive training affects the proprioceptive system and improves learning. This study examined changes in proprioceptive acuity due to passive training to understand the underlying mechanisms of upper extremity training. Participants passively learned a trajectory of elbow-joint movement as per the instructions of a single-arm upper extremity exoskeleton robot, and the performance of the target movement and proprioceptive acuity were assessed before and after the training. We found that passive training improved both the reproduction performance and proprioceptive acuity. We did not identify a significant transfer of the training effect across arms, suggesting that the learning effect is specific to the joint space. Furthermore, we found a significant improvement in learning performance in another type of movement involving the trained elbow joint. These results suggest that participants form a representation of the target movement in the joint space during the passive training, and intensive use of proprioception improves proprioceptive acuity.


Assuntos
Exoesqueleto Energizado , Retroalimentação Sensorial , Desempenho Psicomotor , Treinamento Resistido , Extremidade Superior/fisiopatologia , Articulação do Cotovelo , Humanos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA