Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(9): 3779-3797, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639642

RESUMO

ReaxFF is a computationally efficient model for reactive molecular dynamics simulations that has been applied to a wide variety of chemical systems. When ReaxFF parameters are not yet available for a chemistry of interest, they must be (re)optimized, for which one defines a set of training data that the new ReaxFF parameters should reproduce. ReaxFF training sets typically contain diverse properties with different units, some of which are more abundant (by orders of magnitude) than others. To find the best parameters, one conventionally minimizes a weighted sum of squared errors over all of the data in the training set. One of the challenges in such numerical optimizations is to assign weights so that the optimized parameters represent a good compromise among all the requirements defined in the training set. This work introduces a new loss function, called Balanced Loss, and a workflow that replaces weight assignment with a more manageable procedure. The training data are divided into categories with corresponding "tolerances", i.e., acceptable root-mean-square errors for the categories, which define the expectations for the optimized ReaxFF parameters. Through the Log-Sum-Exp form of Balanced Loss, the parameter optimization is also a validation of one's expectations, providing meaningful feedback that can be used to reconfigure the tolerances if needed. The new methodology is demonstrated with a nontrivial parametrization of ReaxFF for water adsorption on alumina. This results in a new force field that reproduces both the rare and frequent properties of a validation set not used for training. We also demonstrate the robustness of the new force field with a molecular dynamics simulation of water desorption from a γ-Al2O3 slab model.

2.
Inorg Chem ; 63(6): 3129-3136, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38288664

RESUMO

Combining nuclear magnetic resonance (NMR), X-ray absorption spectroscopy near-edge structure (XANES), and density functional theory (DFT), we elucidate the structures of tungstate and molybdate with sugars of interest in the conversion of biomass to platform chemicals (glucose, mannose, and erythrose). We highlight a number of complexes, including one nearly isostructural structure that is formed with each metal-sugar combination. We also emphasize the singular reactivity of erythrose that undergoes retro-aldolization at room temperature.

3.
Angew Chem Int Ed Engl ; 63(6): e202312392, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38055209

RESUMO

For the first time, we report calculations of the free energies of activation of cracking and isomerization reactions of alkenes that combine several different electronic structure methods with molecular dynamics simulations. We demonstrate that the use of a high level of theory (here Random Phase Approximation-RPA) is necessary to bridge the gap between experimental and computed values. These transformations, catalyzed by zeolites and proceeding via cationic intermediates and transition states, are building blocks of many chemical transformations for valorization of long chain paraffins originating, e.g., from plastic waste, vegetable oils, Fischer-Tropsch waxes or crude oils. Compared with the free energy barriers computed at the PBE+D2 production level of theory via constrained ab initio molecular dynamics, the barriers computed at the RPA level by the application of Machine Learning thermodynamic Perturbation Theory (MLPT) show a significant decrease for isomerization reaction and an increase of a similar magnitude for cracking, yielding an unprecedented agreement with the results obtained by experiments and kinetic modeling.

4.
Inorg Chem ; 62(19): 7545-7556, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37130307

RESUMO

The control of metal-sugar complexes speciation in solution is crucial in an energy transition context. Herein, the formation of tungstate-mannose complexes is unraveled in aqueous solution using a multitechnique experimental and theoretical approach. 13C nuclear magnetic resonance (NMR), as well as 13C-1H and 1H-1H correlation spectra, analyzed in the light of coordination-induced shift method and conformation analysis, were employed to characterize the structure of the sugar involved in the complexes. X-ray absorption near edge structure spectroscopy was performed to provide relevant information about the metal electronic and coordination environment. The calculation of 13C NMR chemical shifts for a series of tungstate-mannose complexes using density functional theory (DFT) is a key to identify the appropriate structure among several candidates. Furthermore, a parametric study based on several relevant parameters, namely, pH and tungstate concentration, was carried out to look over the change of the nature and concentrations of the complexes. Two series of complexes were detected, in which the metallic core is either in a ditungstate or a monotungstate form. With respect to previous proposals, we identify two new species. Dinuclear complexes involve both α- and ß-furanose forms chelating the metallic center in a tetradentate fashion. A hydrate form chelating a ditungstate core is also revealed. One monotungstate complex appears at high pH, in which a tetrahedral tungstate center is bound to α-mannofuranose through a monodentate site at the second deprotonated hydroxyl group. This unequalled level of knowledge opens the door to structure-reactivity relationships.

5.
Chem Rev ; 123(9): 6107-6196, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36996355

RESUMO

The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.

6.
Chemphyschem ; 24(3): e202200711, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216780

RESUMO

Platinum-based catalysts with Cl- , OH- , O2- and H2 O ligands, are involved in many industrial processes. Their final chemical properties are impacted by calcination and reduction applied during the preparation and activation steps. We investigate their stability under these reactive conditions with density functional theory (DFT). We benchmark various functionals (PBE-dDsC, optPBE, B3LYP, HSE06, PBE0, TPSS, RTPSS and SCAN) against ACFDT-RPA. PBE-dDsC is well adapted, although hybrid functionals are more accurate for redox reactions. Thermodynamic phase diagrams are determined by computing the chemical potential of the species as a function of temperature and partial pressures of H2 O, HCl, O2 and H2 . The stability and nature of the Pt species are highly sensitive to the activation conditions. Under O2 , high temperatures favour PtO2 while under H2 , platinum is easily reduced to Pt(0). Chlorine modifies the coordination sphere of platinum during calcination by stabilizing PtCl4 and shifts the reduction of platinum to higher temperatures under H2 .

7.
Nanoscale ; 14(24): 8753-8765, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35674285

RESUMO

Quantifying the distances between metallic sites and acid sites is crucial for tuning the catalytic activity and selectivity of bifunctional catalysts involving sub-nanometric platinum (Pt) nano-particles (NP) highly dispersed on a chlorinated alumina support. Thanks to the quantitative use of high resolution scanning transmission electron microscopy in the high angle annular dark field mode, we first highlight the presence of few Pt NP together with Pt single atoms (SA) on γ-alumina supports exhibiting various morphologies (flat-like or egg-like), and chlorine (Cl) and Pt loadings. We demonstrate that increasing the Pt loading does not impact the NP sizes but only the Pt NP inter-distances, whereas the Cl loading influences the SA/NP proportion. Then, we establish a thorough geometrical model which accounts for the way in which the global average metallic - acid inter-site distances evolve from 1 nm to 6 nm as a function of three key physico-chemical descriptors: alumina morphologies, chlorine contents and size factor of alumina particles (directly linked to specific surface area). Considering that Cl is predominantly located at alumina crystallite edges, the morphology strongly impacts the Cl edge saturation: 0.4% for flat-like, and 1.2% for egg-like alumina at fixed specific surface area (∼200 m2 g-1). At Cl edge saturation, the inter-site distance is found to be 3 nm for flat-like, and 1 nm for egg-like alumina. However, for fixed Cl loading, the inter-site distance is less discriminated by the morphology. We discuss these trends in the case of naphtha reforming catalysts and thanks to the as-obtained geometrical model, we identify the key alumina descriptors to tune the inter-site distance.

8.
Angew Chem Int Ed Engl ; 59(43): 18938-18942, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32568440

RESUMO

Zeolite-catalyzed alkene cracking is key to optimize the size of hydrocarbons. The nature and stability of intermediates and transition states (TS) are, however, still debated. We combine transition path sampling and blue moon ensemble density functional theory simulations to unravel the behavior of C7 alkenes in CHA zeolite. Free energy profiles are determined, linking π-complexes, alkoxides and carbenium ions, for B1 (secondary to tertiary) and B2 (tertiary to secondary) ß-scissions. B1 is found to be easier than B2 . The TS for B1 occurs at the breaking of the C-C bond, while for B2 it is the proton transfer from propenium to the zeolite. We highlight the dynamic behaviors of the various intermediates along both pathways, which reduce activation energies with respect to those previously evaluated by static approaches. We finally revisit the ranking of isomerization and cracking rate constants, which are crucial for future kinetic studies.

9.
Nanoscale ; 11(14): 6897-6904, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30912782

RESUMO

Atomically dispersed metals promise the ultimate catalytic efficiency, but their stabilization onto suitable supports remains challenging owing to their aggregation tendency. Focusing on the industrially-relevant Pt/γ-Al2O3 catalyst, in situ X-ray absorption spectroscopy and environmental scanning transmission electron microscopy allow us to monitor the stabilization of Pt single atoms under O2 atmosphere, as well as their aggregation into mobile reduced subnanometric clusters under H2. Density functional theory calculations reveal that oxygen from the gas phase directly contributes to metal-support adhesion, maximal for single Pt atoms, whereas hydrogen only adsorbs on Pt, and thereby leads to Pt clustering. Finally, Pt cluster mobility is shown to be activated at low temperature and high H2 pressure. Our results highlight the crucial importance of the reactive atmosphere on the stability of single-atom versus cluster catalysts.

10.
Chem Sci ; 9(31): 6532-6539, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30310584

RESUMO

A family of Al-rich ZSM-5 zeolites with Si/Al = 8 ± 0.5 was prepared according to a biomass-mediated supramolecular approach. A combination of advanced characterisation techniques and periodic density functional theory (DFT) calculations unraveled the purity and stability of un-expected Al-enriched ZSM-5 structures, hence allowing to cross the frontier of Si/Al lower limit. In addition, these Al-rich ZSM-5 zeolites demonstrated high catalytic activity in n-hexane cracking and methanol conversion into hydrocarbons, being in line with the presence of numerous Brønsted acid sites.

11.
Angew Chem Int Ed Engl ; 56(1): 230-234, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910202

RESUMO

The mechanism of isopropanol dehydration on amorphous silica-alumina (ASA) was unraveled by a combination of experimental kinetic measurements and periodic density functional theory (DFT) calculations. We show that pseudo-bridging silanols (PBS-Al) are the most likely active sites owing to the synergy between the Brønsted and Lewis acidic properties of these sites, which facilitates the activation of alcohol hydroxy groups as leaving groups. Isopropanol dehydration was used to specifically investigate these PBS-Al sites, whose density was estimated to be about 10-1  site nm-2 on the silica-doped alumina surface under investigation, by combining information from experiments and theoretical calculations.

12.
J Am Chem Soc ; 137(33): 10710-9, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26244620

RESUMO

Despite the widespread use of amorphous aluminosilicates (ASA) in various industrial catalysts, the nature of the interface between silica and alumina and the atomic structure of the catalytically active sites are still subject to debate. Here, by the use of dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) and density functional theory (DFT) calculations, we show that on silica and alumina surfaces, molecular aluminum and silicon precursors are, respectively, preferentially grafted on sites that enable the formation of Al(IV) and Si(IV) interfacial sites. We also link the genesis of Brønsted acidity to the surface coverage of aluminum and silicon on silica and alumina, respectively.

13.
Angew Chem Int Ed Engl ; 54(23): 6824-7, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25906826

RESUMO

Controlling the nature and size of cobalt(II) polynuclear precursors on γ-alumina and silica-alumina supports represents a challenge for the synthesis of optimal cobalt-based heterogeneous catalysts. By density functional theory (DFT) calculations, we show how after drying the interaction of cobalt(II) precursor on γ-alumina is driven by a structural recognition phenomenon, leading to the formation of an epitaxial Co(OH)2 precipitate involving a Co-Al hydrotalcite-like interface. On a silica-alumina surface, this phenomenon is prevented due to the passivation effect of silica domains. This finding opens new routes to tune the metal-support interaction at the synthesis step of heterogeneous catalysts.

14.
Angew Chem Int Ed Engl ; 53(46): 12426-9, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25056683

RESUMO

Platinum nanoclusters highly dispersed on γ-alumina are widely used as heterogeneous catalysts. To understand the chemical interplay between the Pt nanoparticles, the support, and the reductive atmosphere, we performed X-ray absorption near edge structure (XANES) in situ experiments recorded in high energy resolution fluorescence detection (HERFD) mode. Spectra are assigned by comparison with simulated XANES spectra on models obtained by molecular dynamics (DFT-MD). We propose platinum cluster morphologies and quantify the hydrogen coverages compatible with XANES spectra recorded at variable hydrogen pressures and temperatures. Using cutting-edge methodologies to assign XANES spectra, this work gives unequalled atomic insights into the characterization of supported nanoclusters.

15.
Chemistry ; 18(34): 10511-4, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22807309

RESUMO

SO(3) -induced surface reconstruction: The SO(3) molecule as a multidentate ligand induces remarkable surface reconstruction phenomena on alkaline earth oxide surface. By using ab initio computations, adsorption properties are derived to elucidate the thermodynamics of the SO(3) -BaO system.

16.
J Am Chem Soc ; 134(19): 8115-26, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22397705

RESUMO

The objective of this work was to study the adsorption and separation of the most important families of hydrocarbon compounds on metal-organic frameworks (MOFs), in comparison with zeolites. For this purpose, we have selected four probe molecules, each of them representing one of these families, i.e., o- and p-xylene as aromatics, 1-octene as an alkene, and n-octane as an alkane. The separation of these four molecules was studied by binary breakthrough experiments. To represent the large diversity of MOF structures, the experiments were carried out with (i) two MOFs with coordinatively unsaturated metal sites (CUS), i.e., Cu-btc (HKUST-1) and CPO-27-Ni, (ii) a MOF with an anionic framework and extraframework cations, i.e. RHO-ZMOF, and (iii) two rather apolar zeolitic imidazolate framework (ZIF) materials with different pore sizes, i.e. ZIF-8 and ZIF-76. Zeolite NaY and zeolite ß were used as polar and apolar reference adsorbents, respectively. The results can be briefly summarized as follows: ZIFs (not carrying any polar functional groups) behave like apolar adsorbents and exhibit very interesting and unexpected molecular sieving properties. CUS-MOFs behave like polar adsorbents but show the specificity of preferring alkenes over aromatics. This feature is rationalized thanks to DFT+D calculations. MOFs with extraframework cations behave like polar (cationic) zeolites.

17.
Chem Commun (Camb) ; 48(34): 4076-8, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22430526

RESUMO

The adsorption of CO on amorphous silica-alumina (ASA) was calculated by DFT. CO appears as a probe of the electrostatic field induced by the whole surface, at the origin of a so-called vibrational Stark effect responsible for the CO frequency shifts. Brønsted acidity of the ASA sites does not directly correlate CO frequency shifts.

18.
Phys Chem Chem Phys ; 12(44): 14740-8, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20944858

RESUMO

A set of CaO samples was prepared from thermal decomposition of several precursors, leading to very different surface properties. During storage, CaO samples rehydrated quickly but reversibly. Before characterization, the samples were pre-treated at 1023 K under nitrogen flow to obtain CaO as the active phase. Although this pre-treatment led to almost the same specific surface areas for all samples, their basic reactivity levels toward 2-methylbut-3-yn-2-ol conversion were different from one preparation to another. In contrast with the properties of MgO pre-treated at the same temperature, the basic reactivity of CaO correlates neither with the concentration of surface defects (exposing ions in low coordination) determined by photoluminescence nor with the deprotonation ability toward methanol. In order to identify the active sites on CaO pre-treated under nitrogen in the temperature range 673 K-1023 K, OH groups were quantified with (1)H NMR: the higher the surface density of OH groups, the higher the basic reactivity. Even after pre-treatment at 1023 K, after which only a few hydroxyls remain, the basic reactivity is governed by the remaining hydroxylation of the surface. The higher reactivity of OH groups of CaO compared to those of Ca(OH)(2) and MgO is discussed.

19.
J Am Chem Soc ; 132(35): 12365-77, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20715825

RESUMO

The zeolite imidazolate framework ZIF-8 is shown for the first time to be able to catalyze transesterification of vegetable oil with significant activity. Rationalization of this behavior at the atomic scale is provided by combining CO adsorption monitored by FTIR and DFT calculations (clusters and periodic models). We demonstrate that the acido-basic sites are located at the external surface of the material or at defects, but not in the microporosity of ZIF-8. A great variety of sites are found the surface: OH and NH groups, hydrogenocarbonates, low-coordinated Zn atoms, and free N(-) moieties belonging to linkers. Their proportions depend on the operating conditions (temperature and pressure). The acido-basicity of the surface is then probed by adsorption of CO at low temperature. In parallel, the species present are mapped by DFT calculations combined with a thermodynamic model. An assignment of the CO region of the FTIR spectra can thus be proposed. The complex infrared spectrum is attributed to the coexistence of classical C-adducts of CO with acid sites and other modes on basic sites (O-adducts and side-on adducts). Adsorption energies and CO frequency shifts show that some strong Lewis sites exist (in particular Zn(II) species), as well as strong Brønsted acid sites (NH groups), together with basic sites (OH groups and N(-) moieties). By calculating the co-adsorption of a model ester (methyl acetate) and methanol, we show the prevailing role of Zn(II) species as acid sites, combined with N(-) moieties and OH groups as basic ones, in determining the catalytic properties of ZIF-8. This work opens new perspectives on the use of MOFs in catalysis and, more generally, on the properties of their external surface.


Assuntos
Ácidos/química , Ésteres/síntese química , Imidazóis/química , Simulação de Dinâmica Molecular , Compostos Organometálicos/química , Teoria Quântica , Zeolitas/química , Zinco/química , Monóxido de Carbono/química , Catálise , Ésteres/química , Estrutura Molecular , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA