Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(6): 8601-8608, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724080

RESUMO

Alloying Al2O3 with Ga2O3 to form ß-(AlxGa1-x)2O3 opens the door to a large number of new possibilities for the fabrication of devices with tunable properties in many high-performance applications such as optoelectronics, sensing systems, and high-power electronics. Often, the properties of these devices are impacted by defects induced during the growth process. In this work, we uncover the crystal structure of a ß-(Al0.2Ga0.8)2O3/ß-Ga2O3 interface grown by molecular beam epitaxy. In particular, we determine Al coordination and the stability of Al and Ga interstitials and their effect on the electronic structure of the material by means of scanning transmission electron microscopy combined with density functional theory. Al atoms can substitutionally occupy both octahedral and tetrahedral sites. The atomic structure of the ß-(Al0.2Ga0.8)2O3/ß-Ga2O3 interface additionally shows Al and Ga interstitials located between neighboring tetrahedrally coordinated cation sites, whose stability will depend on the number of surrounding Al atoms. The presence of Al atoms near interstitials leads to structural distortions in the lattice and creates interstitial-divacancy complexes that will eventually form deep-level states below the conduction band (Ec) at Ec -1.25 eV, Ec -1.68 eV, Ec -1.78 eV, Ec -1.83 eV, and Ec -1.86 eV for a Ga interstitial surrounded by zero, one, two, three, and four Al atoms, respectively. These findings bring new insight toward the fabrication of tunable ß-(AlxGa1-x)2O3 heterostructure-based devices with controlled electronic properties.

2.
J Vis Exp ; (173)2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279511

RESUMO

The modern aberration-corrected scanning transmission electron microscopes (AC-STEM) have successfully achieved direct visualization of atomic columns with sub-angstrom resolution. With this significant progress, advanced image quantification and analysis are still at the early stages. In this work, we present the complete pathway for the metrology of atomic resolution scanning transmission electron microscopy (STEM) images. This includes (1) tips for acquiring high-quality STEM images; (2) denoising and drift-correction for enhancing measurement accuracy; (3) obtaining initial atomic positions; (4) indexing the atoms based on unit cell vectors; (5) quantifying the atom column positions with either 2D-Gaussian single peak fitting or (6) multi-peak fitting routines for slightly overlapping atomic columns; (7) quantification of lattice distortion/strain within the crystal structures or at the defects/interfaces where the lattice periodicity is disrupted; and (8) some common methods to visualize and present the analysis. Furthermore, a simple self-developed free MATLAB app (EASY-STEM) with a graphical user interface (GUI) will be presented. The GUI can assist in the analysis of STEM images without the need for writing dedicated analysis code or software. The advanced data analysis methods presented here can be applied for the local quantification of defect relaxations, local structural distortions, local phase transformations, and non-centrosymmetry in a wide range of materials.


Assuntos
Microscopia Eletrônica , Microscopia Eletrônica de Transmissão e Varredura
3.
ACS Nano ; 13(2): 2024-2033, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30620561

RESUMO

Despite intensive research efforts, the nature of the active sites for O2 and H2 adsorption/dissociation by supported gold nanoparticles (NPs) is still an unresolved issue in heterogeneous catalysis. This stems from the absence of a clear picture of the structural evolution of Au NPs at near reaction conditions, i. e., at high pressures and high temperatures. We hereby report real-space observations of the equilibrium shapes of titania-supported Au NPs under O2 and H2 at atmospheric pressure using gas transmission electron microscopy. In situ TEM observations show instantaneous changes in the equilibrium shape of Au NPs during cooling under O2 from 400 °C to room temperature. In comparison, no instant change in equilibrium shape is observed under a H2 environment. To interpret these experimental observations, the equilibrium shape of Au NPs under O2, atomic oxygen, and H2 is predicted using a multiscale structure reconstruction model. Excellent agreement between TEM observations and theoretical modeling of Au NPs under O2 provides strong evidence for the molecular adsorption of oxygen on the Au NPs below 120 °C on specific Au facets, which are identified in this work. In the case of H2, theoretical modeling predicts no interaction with gold atoms that explain their high morphological stability under this gas. This work provides atomic structural information for the fundamental understanding of the O2 and H2 adsorption properties of Au NPs under real working conditions and shows a way to identify the active sites of heterogeneous nanocatalysts under reaction conditions by monitoring the structure reconstruction.

4.
Phys Rev Lett ; 120(2): 025901, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29376689

RESUMO

We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu_{50}Au_{50}, and Cu_{25}Au_{75} nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N-body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA