Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2019: 8472712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312220

RESUMO

Organoid is a cell organization grown in a three-dimensional (3D) culture system which represents all characteristics of its origin. However, this organ-like structure requires supporting matrix to maintain its characteristics and functions. Matrigel, derived from mouse sarcoma, has often been used as the supporting matrix for organoids, but the result may not be desirable for clinical applications because of the unidentified components from the mouse sarcoma. On the other hand, natural characteristics of collagen emphasize toxic-free friendly niche to both organoid and normal tissue. Hence, this study attempts to develop a new, collagen-based matrix that may substitute Matrigel in organoid culture. Collagen-based matrix was made, using type 1 collagen, Ham's F12 nutrient mixture, and bicarbonate. Then, characteristics of mouse colon organoids were analyzed by morphology and quantitative messenger RNA (mRNA) expression, revealing that the mouse colon organoids grown in the collagen-based matrix and in Matrigel had quite similar morphology, specific markers, and proliferative rates. Mouse small intestine-derived organoids, stomach-derived organoids, and human colon-derived organoids were also cultured, all of which were successfully grown in the collagen-based matrix and had similar properties compared to those cultured in Matrigel. Furthermore, possibility of organoid transplantation was observed. When mouse colon organoids were transplanted with collagen matrix into the EDTA-colitis mouse model, colon organoids were successfully engrafted in damaged tissue. For that reason, the use of collagen-based matrix in organoid culture will render organoid cultivation less expensive and clinically applicable.

2.
PLoS One ; 13(11): e0207204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30419062

RESUMO

Lung cancer is the second most common cancer in the United States and the leading cause of mortality in cancer patients. Biomarkers predicting survival of patients with lung cancer have a profound effect on patient prognosis and treatment. However, predictive biomarkers for survival and their relevance for lung cancer are not been well known yet. The objective of this study was to perform machine learning with data from The Cancer Genome Atlas of patients with lung adenocarcinoma (LUAD) to find survival-specific gene mutations that could be used as survival-predicting biomarkers. To identify survival-specific mutations according to various clinical factors, four feature selection methods (information gain, chi-squared test, minimum redundancy maximum relevance, and correlation) were used. Extracted survival-specific mutations of LUAD were applied individually or as a group for Kaplan-Meier survival analysis. Mutations in MMRN2 and GMPPA were significantly associated with patient mortality while those in ZNF560 and SETX were associated with patient survival. Mutations in DNAJC2 and MMRN2 showed significant negative association with overall survival while mutations in ZNF560 showed significant positive association with overall survival. Mutations in MMRN2 showed significant negative association with disease-free survival while mutations in DRD3 and ZNF560 showed positive associated with disease-free survival. Mutations in DRD3, SETX, and ZNF560 showed significant positive association with survival in patients with LUAD while the opposite was true for mutations in DNAJC2, GMPPA, and MMRN2. These gene mutations were also found in other cohorts of LUAD, lung squamous cell carcinoma, and small cell lung cancer. In LUAD of Pan-Lung Cancer cohort, mutations in GMPPA, DNAJC2, and MMRN2 showed significant negative associations with survival of patients while mutations in DRD3 and SETX showed significant positive association with survival. In this study, machine learning was conducted to obtain information necessary to discover specific gene mutations associated with the survival of patients with LUAD. Mutations in the above six genes could predict survival rate and disease-free survival rate in patients with LUAD. Thus, they are important biomarker candidates for prognosis.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutação , Adenocarcinoma de Pulmão/mortalidade , Biomarcadores Tumorais/genética , Estudos de Associação Genética , Humanos , Neoplasias Pulmonares/mortalidade , Aprendizado de Máquina , Prognóstico , Análise de Sobrevida
3.
Yonsei Med J ; 59(6): 727-735, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29978609

RESUMO

PURPOSE: To investigate the effect of combined inhibition of protein kinase B (AKT) and SRC on the growth and metastatic potential of human pancreatic cancer cells. MATERIALS AND METHODS: AKT and SRC were inhibited using 10-DEBC and PP2, respectively. The expression of their messenger RNAs were down-regulated by specific small interfering RNA (siRNA). Changes in pancreatic cancer cell growth and metastatic potential were determined using a cell viability assay and a xenotransplant model of pancreatic cancer, as well as cell migration and invasion assays. Signal proteins were analyzed by Western blot. RESULTS: The inhibitors 10-DEBC and PP2 suppressed cell proliferation in a dose-dependent fashion in pancreatic cancer cell lines MIA PaCa-2 and PANC-1. The simultaneous inhibition of AKT and SRC at low concentrations resulted in a significant suppression of cell proliferation. Knockdown of AKT2 and SRC using siRNAs also significantly decreased cell proliferation. In a pancreatic cancer model, combined treatment with 10-DEBC and PP2 also significantly suppressed the growth of pancreatic cancer. Application of 10-DEBC with PP2 significantly reduced the metastatic potential of pancreatic cancer cells by inhibiting migration and invasion. The combined inhibition suppressed the phosphorylation of mTOR and ERK in pancreatic cancer cells. CONCLUSION: Combined targeting of AKT and SRC resulted in a synergistic efficacy against human pancreatic cancer growth and metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Mitomicinas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Terapia de Alvo Molecular , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo
4.
Pancreas ; 47(5): 643-651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29683976

RESUMO

OBJECTIVES: The aim of this study was to investigate the effects of the activated P2X7 receptors on the proliferation and growth of human pancreatic cancer cells. METHODS: Proliferation was measured by incorporating bromodeoxyuridine into pancreatic cancer cells, MIA PaCa-2 and HPAC. Expression of P2 receptors and signal molecules was examined using quantitative reverse transcription/polymerase chain reaction and/or Western blot. Proliferative effects of the P2X7 receptors in vivo were examined using a xenotransplant model of pancreatic cancer cell lines. RESULTS: Incubating pancreatic cancer cells with adenosine triphosphate (ATP) and 2'(3')-O-(4-Benzoylbenzoyl)ATP resulted in a dose-dependent increase of cell proliferation. The P2 receptor antagonist, KN-62, and small interfering RNA against P2X7 receptors, significantly decreased the proliferative effects of ATP. The ATP-induced proliferation was mediated by protein kinase C, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK); specifically, ATP increased the phosphorylation of ERK1/2 and JNK. The expression of inducible nitric oxide synthase was decreased by P2X7 receptor activation. In a xenotransplant model, applying ATP significantly increased the growth of induced tumors. CONCLUSIONS: The P2X7 receptor activation by extracellular nucleotides increased proliferation and growth of human pancreatic cancer cells via ERK1/2 and JNK. This supports the pathophysiological role of P2X7 receptors in pancreatic disease and recovery.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Agonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Interferência de RNA , Receptores Purinérgicos P2X7/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Am Soc Nephrol ; 27(8): 2331-45, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26701976

RESUMO

AKI confers increased risk of progression to CKD. αKlotho is a cytoprotective protein, the expression of which is reduced in AKI, but the relationship of αKlotho expression level to AKI progression to CKD has not been studied. We altered systemic αKlotho levels by genetic manipulation, phosphate loading, or aging and examined the effect on long-term outcome after AKI in two models: bilateral ischemia-reperfusion injury and unilateral nephrectomy plus contralateral ischemia-reperfusion injury. Despite apparent initial complete recovery of renal function, both types of AKI eventually progressed to CKD, with decreased creatinine clearance, hyperphosphatemia, and renal fibrosis. Compared with wild-type mice, heterozygous αKlotho-hypomorphic mice (αKlotho haploinsufficiency) progressed to CKD much faster, whereas αKlotho-overexpressing mice had better preserved renal function after AKI. High phosphate diet exacerbated αKlotho deficiency after AKI, dramatically increased renal fibrosis, and accelerated CKD progression. Recombinant αKlotho administration after AKI accelerated renal recovery and reduced renal fibrosis. Compared with wild-type conditions, αKlotho deficiency and overexpression are associated with lower and higher autophagic flux in the kidney, respectively. Upregulation of autophagy protected kidney cells in culture from oxidative stress and reduced collagen 1 accumulation. We propose that αKlotho upregulates autophagy, attenuates ischemic injury, mitigates renal fibrosis, and retards AKI progression to CKD.


Assuntos
Injúria Renal Aguda/complicações , Autofagia/fisiologia , Progressão da Doença , Receptores de Superfície Celular/fisiologia , Insuficiência Renal Crônica/etiologia , Animais , Autofagia/efeitos dos fármacos , Glucuronidase , Proteínas Klotho , Camundongos , Receptores de Superfície Celular/uso terapêutico , Insuficiência Renal Crônica/prevenção & controle
6.
J Am Soc Nephrol ; 26(6): 1290-302, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25326585

RESUMO

Cardiac dysfunction in CKD is characterized by aberrant cardiac remodeling with hypertrophy and fibrosis. CKD is a state of severe systemic Klotho deficiency, and restoration of Klotho attenuates vascular calcification associated with CKD. We examined the role of Klotho in cardiac remodeling in models of Klotho deficiency-genetic Klotho hypomorphism, high dietary phosphate intake, aging, and CKD. Klotho-deficient mice exhibited cardiac dysfunction and hypertrophy before 12 weeks of age followed by fibrosis. In wild-type mice, the induction of CKD led to severe cardiovascular changes not observed in control mice. Notably, non-CKD mice fed a high-phosphate diet had lower Klotho levels and greatly accelerated cardiac remodeling associated with normal aging compared with those on a normal diet. Chronic elevation of circulating Klotho because of global overexpression alleviated the cardiac remodeling induced by either high-phosphate diet or CKD. Regardless of the cause of Klotho deficiency, the extent of cardiac hypertrophy and fibrosis correlated tightly with plasma phosphate concentration and inversely with plasma Klotho concentration, even when adjusted for all other covariables. High-fibroblast growth factor-23 concentration positively correlated with cardiac remodeling in a Klotho-deficient state but not a Klotho-replete state. In vitro, Klotho inhibited TGF-ß1-, angiotensin II-, or high phosphate-induced fibrosis and abolished TGF-ß1- or angiotensin II-induced hypertrophy of cardiomyocytes. In conclusion, Klotho deficiency is a novel intermediate mediator of pathologic cardiac remodeling, and fibroblast growth factor-23 may contribute to cardiac remodeling in concert with Klotho deficiency in CKD, phosphotoxicity, and aging.


Assuntos
Cardiomegalia/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Fosfatos/sangue , Insuficiência Renal Crônica/sangue , Remodelação Ventricular/fisiologia , Animais , Biomarcadores/sangue , Cardiomegalia/epidemiologia , Cardiomegalia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Fibroblastos/metabolismo , Fibrose/sangue , Fibrose/patologia , Glucuronidase/sangue , Testes de Função Cardíaca , Proteínas Klotho , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fosfatos/metabolismo , Distribuição Aleatória , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/metabolismo , Sensibilidade e Especificidade , Uremia/sangue , Uremia/epidemiologia , Uremia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA