Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560254

RESUMO

In this study, a noncontact fabric loop sensor based on magnetic-field-induced conductivity, which can simultaneously detect cardiac activity and respiration signals, was developed and the effects of the sensor's shape and measurement position on the sensing performance were analyzed. Fifteen male subjects in their twenties wore sleeveless shirts equipped with various types of fabric loop sensors (spiky, extrusion, and spiral), and the cardiac activity and respiratory signals were measured twice at positions P2, P4, and P6. The measurements were verified by comparing them against the reference electrocardiogram (ECG) and respiratory signals measured using BIOPAC® (MP150, ECG100B, RSP100C). The waveforms of the raw signal measured by the fabric loop sensor were filtered with a bandpass filter (1-20 Hz) and qualitatively compared with the ECG signal obtained from the Ag/AgCI electrode. Notwithstanding a slight difference in performance, the three fabric sensors could simultaneously detect cardiac activity and respiration signals at all measurement positions. In addition, it was verified through statistical analysis that the highest-quality signal was obtained at the measurement position of P4 or P6 using the spiral loop sensor.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Respiração , Eletrodos , Condutividade Elétrica
2.
J Med Syst ; 45(4): 41, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608815

RESUMO

Despite recent research on joint motion measurement to monitor human body movement, current measurement techniques and tools have significant limitations, including requiring large space for measurement and causing discomfort in test subjects wearing motion sensors. Our study aims, first, to develop carbon nanotube (CNT)-based textile joint motion sensors. Second, ours study aims to identify the most suitable CNT-based sensor structure and attachment method for use on a wearable platform during general exercise speeds. Lastly, we used these sensors on the human body, using sleeves and legs to find the most stable location, and we used the CNT-based sensor condition to monitor joint motions. We utilized our CNT-based sensor, which has proper elasticity as well as conductivity, and applied it to the elbow and knee joints. Based on the strain gauge principle, we monitored the variance of electric resistance that occurred when the CNT-based sensor was stretched due to limb motion. Our study tested 48 types of sensors. These sensors were applied to the CNT using different base knit textiles as well as different attachment methods, layers, sensor lengths, and sensor widths. The four most successful sensor types, which showed superior efficacy over the others in joint motion measurement, were selected for further study. These four sensors were then used to measure the elbow and knee joint motions of human subjects by placing them on different locations on sleeves and legs. The CNT knit textile sensors best suited to measuring joint motions are those with a double-layered CNT knit and 5 cm long × 0.5 cm or 1 cm wide sensors attached to a polyester¬-based knit using a welding method. The best position for the sensor to more stably monitor joint motions was the "below hinge position" from the elbow or knee hinge joint. Our study suggests an alternative strategy for joint-motion measurement that could contribute to the development of more comfortable and human-friendly methods of human limb motion measurement.


Assuntos
Vestuário , Extremidades/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Movimento/fisiologia , Têxteis , Humanos , Nanotubos de Carbono
3.
Sensors (Basel) ; 20(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947865

RESUMO

The purpose of this study was to investigate the effects of the shape and attachment position of stretchable textile piezoresistive sensors coated with single-walled carbon nanotubes on their performance in measuring the joint movements of children. The requirements for fabric motion sensors suitable for children are also identified. The child subjects were instructed to wear integrated clothing with sensors of different shapes (rectangular and boat-shaped), attachment positions (at the knee and elbow joints or 4 cm below the joints). The change in voltage caused by the elongation and contraction of the fabric sensors was measured for the flexion-extension motions of the arms and legs at 60°/s (three measurements of 10 repetitions each for the 60° and 90° angles, for a total of 60 repetitions). Their reliability was verified by analyzing the agreement between the fabric motion sensors and attached acceleration sensors. The experimental results showed that the fabric motion sensor that can measure children's arm and leg motions most effectively is the rectangular-shaped sensor attached 4 cm below the joint. In this study, we developed a textile piezoresistive sensor suitable for measuring the joint motion of children, and analyzed the shape and attachment position of the sensor on clothing suitable for motion sensing. We showed that it is possible to sense joint motions of the human body by using flexible fabric sensors integrated into clothing.


Assuntos
Articulações/fisiologia , Monitorização Fisiológica , Movimento/fisiologia , Têxteis , Braço/fisiologia , Criança , Grafite/química , Humanos , Masculino , Nanotubos de Carbono/química
4.
J Med Syst ; 35(2): 189-201, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20703570

RESUMO

We measured the electrical activity signals of the heart through vital signs monitoring garments that have textile electrodes in conductive yarns while the subject is in stable and dynamic motion conditions. To measure the electrical activity signals of the heart during daily activities, four types of monitoring garment were proposed. Two experiments were carried out as follows: the first experiment sought to discover which garment led to the least displacement of the textile electrode from its originally intended location on the wearer's body. In the second, we measured and compared the electrical activity signals of the heart between the wearer's stable and dynamic motion states. The results indicated that the most appropriate type of garment sensing-wise was the "cross-type", and it seems to stabilize the electrode's position more effectively. The value of SNR of ECG signals for the "cross-type" garment is the highest. Compared to the "chest-belt-type" garment, which has already been marketed commercially, the "cross-type" garment was more efficient and suitable for heart activity monitoring.


Assuntos
Eletrocardiografia Ambulatorial/instrumentação , Eletrocardiografia Ambulatorial/métodos , Coração/fisiologia , Têxteis , Vestuário , Eletrodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA