Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ginseng Res ; 48(3): 245-252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707644

RESUMO

Ginseng is a traditional herbal medicine used for prevention and treatment of various diseases as a tonic. Recent scientific cohort studies on life prolongation with ginseng consumption support this record, as those who consumed ginseng for more than 5 years had reduced mortality and cognitive decline compared to those who did not. Clinical studies have also shown that acute or long-term intake of ginseng total extract improves acute working memory performance or cognitive function in healthy individuals and those with subjective memory impairment (SMI), mild cognitive impairment (MCI), or early Alzheimer's disease (AD) dementia who are taking AD medication(s). Ginseng contains various components ranging from classical ginsenosides and polysaccharides to more recently described gintonin. However, it is unclear which ginseng component(s) might be the main candidate that contribute to memory or cognitive improvements or prevent cognitive decline in older individuals. This review describes recent clinical contributors to ginseng components in clinical tests and introduces emerging evidence that ginseng components could be novel candidates for cognitive improvement in older individuals, as ginseng components improve SMI cognition and exhibits add-on effects when co-administered with early AD dementia drugs. The mechanism behind the beneficial effects of ginseng components and how it improves cognition are presented. Additionally, this review shows how ginseng components can contribute to SMI, MCI, or early AD dementia when used as a supplementary food and/or medicine, and proposes a novel combination therapy of current AD medicines with ginseng component(s).

2.
J Ginseng Res ; 48(3): 286-297, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707640

RESUMO

Brain plasticity refers to the brain's ability to modify its structure, accompanied by its functional changes. It is influenced by learning, experiences, and dietary factors, even in later life. Accumulated researches have indicated that ginseng may protect the brain and enhance its function in pathological conditions. There is a compelling need for a more comprehensive understanding of ginseng's role in the physiological condition because many individuals without specific diseases seek to improve their health by incorporating ginseng into their routines. This review aims to deepen our understanding of how ginseng affects brain plasticity of people undergoing normal aging process. We provided a summary of studies that reported the impact of ginseng on brain plasticity and related factors in human clinical studies. Furthermore, we explored researches focused on the molecular mechanisms underpinning the influence of ginseng on brain plasticity and factors contributing to brain plasticity. Evidences indicate that ginseng has the potential to enhance brain plasticity in the context of normal aging by mediating both central and peripheral systems, thereby expecting to improve age-related declines in brain function. Moreover, given modern western diet can damage neuroplasticity in the long term, ginseng can be a beneficial supplement for better brain health.

3.
Sci Rep ; 14(1): 6263, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491103

RESUMO

Psychological stress and intestinal leakage are key factors in atopic dermatitis (AD) recurrence and exacerbation. Here, we demonstrate the mechanism underlying bacterial translocation across intestinal epithelial barrier damaged due to stress and further aggravation of trimellitic anhydride (TMA)-induced itch, which remain unclear, in AD mice. Immobilization (IMO) stress exacerbated scratching bouts and colon histological damage, and increased serum corticosterone and lipopolysaccharide (LPS). Orally administered fluorescein isothiocyanate (FITC)-dextran and surgically injected (into the colon) Cy5.5-conjugated LPS were detected in the serum and skin after IMO stress, respectively. The relative abundance of aerobic or facultative anaerobic bacteria was increased in the colon mucus layer, and Lactobacillus murinus, E. coli, Staphylococcus nepalensis, and several strains of Bacillus sp. were isolated from the spleens and mesenteric lymph nodes. Oral antibiotics or intestinal permeability blockers, such as lubiprostone (Lu), 2,4,6-triaminopyrimidine (TAP) and ML-7, inhibited IMO stress-associated itch; however, it was reinduced through intradermal or i.p. injection of LPS without IMO stress. I.p. injection of TAK-242 (resatorvid), a TLR4 inhibitor, abrogated IMO stress-associated itch, which was also confirmed in TLR4-KO mice. IMO stress alone did not cause itch in naïve mice. IMO stress-induced itch aggravation in TMA-treated AD mice might be attributed to the translocation of gut-derived bacterial cells and LPS, which activates peripheral TLR4 signaling.


Assuntos
Dermatite Atópica , Receptor 4 Toll-Like , Animais , Camundongos , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Modelos Animais de Doenças , Escherichia coli , Lipopolissacarídeos/metabolismo , Prurido/induzido quimicamente , Receptor 4 Toll-Like/metabolismo
4.
J Ginseng Res ; 48(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223830

RESUMO

Fresh ginseng is prone to spoilage due to its high moisture content. For long-term storage, most fresh ginsengs are dried to white ginseng (WG) or steamed for hours at high temperature/pressure and dried to form Korean Red ginseng (KRG). They are further processed for ginseng products when subjected to hot water extraction/concentration under pressure. These WG or KRG preparation processes affect ginsenoside compositions and also other ginseng components, probably during treatments like steaming and drying, to form diverse bioactive phospholipids. It is known that ginseng contains high amounts of gintonin lysophosphatidic acids (LPAs). LPAs are simple lipid-derived growth factors in animals and humans and act as exogenous ligands of six GTP-binding-protein coupled LPA receptor subtypes. LPAs play diverse roles ranging from brain development to hair growth in animals and humans. LPA-mediated signaling pathways involve various GTP-binding proteins to regulate downstream pathways like [Ca2+]i transient induction. Recent studies have shown that gintonin exhibits anti-Alzheimer's disease and anti-arthritis effects in vitro and in vivo mediated by gintonin LPAs, the active ingredients of gintonin, a ginseng-derived neurotrophin. However, little is known about how gintonin LPAs are formed in high amounts in ginseng compared to other herbs. This review introduces atypical or non-enzymatic pathways under the conversion of ginseng phospholipids into gintonin LPAs during steaming and extraction/concentration processes, which exert beneficial effects against degenerative diseases, including Alzheimer's disease and arthritis in animals and humans via LPA receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA