Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(39): 33238-33251, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30199628

RESUMO

Since the first reports of Cu dendrimer-encapsulated nanoparticles (DENs) published in 1998, the dendrimer-templating method has become the best and most versatile method for preparing ultrafine metallic and bimetallic nanoparticles (1-3 nm) with well-defined compositions, high catalytic activity, and tunable selectivity. However, DENs have remained for the most part model systems with limited prospects for scale up and integration into high-performance and reusable catalytic modules and systems for industrial-scale applications. Here, we describe a facile and scalable route to the preparation of catalytic polyvinylidene fluoride (PVDF) membranes with in situ synthesized supramolecular dendrimer particles (SDPs) that can serve as hosts and containers for Pt(0) nanoparticles (2-3 nm). These new catalytic membranes were prepared using a reactive encapsulation process similar to that utilized to prepare Pt DENs by addition of a reducing agent (sodium borohydride) to aqueous complexes of Pt(II) + G4-OH/G6-OH polyamidoamine (PAMAM) dendrimers. However, the SDPs (2.4 µm average diameter) of our new mixed matrix PVDF-PAMAM membranes were synthesized in the dope dispersion without purification prior to film casting using (i) a low-generation PAMAM dendrimer (G1-NH2) as particle precursor and (ii) epichlorohydrin, an inexpensive functional reagent, as cross-linker. In addition, the membrane PAMAM particles contain secondary amine groups (∼1.9 mequiv per gram of dry membrane), which are more basic and thus have higher Pt binding affinity than the tertiary amine groups of the G4-OH and G6-OH PAMAM dendrimers. Proof-of-concept experiments show that our new PVDF-PAMAM-G1-Pt/membranes can serve as highly active and reusable catalysts for the hydrogenation of alkenes and alkynes to the corresponding alkanes using (i) H2 at room temperature and a pressure of 1 bar and (ii) low catalyst loadings of ∼1.4-1.6 mg of Pt. Using cyclohexene as model substrate, we observed near quantitative conversion to cyclohexane (∼98%). The regeneration studies showed that our new Pt/membrane catalysts are stable and can be reused for five consecutive reaction cycles for a total duration of 120 h including 60 h of heating at 100 °C under vacuum for substrate, product, and solvent removal with no detectable loss of cyclohexene hydrogenation activity. The overall results of our study point to a promising, versatile, and scalable path for the integration of catalytic membranes with in situ synthesized SDP hosts for Pt(0) nanoparticles into high-throughput modules and systems for heterogeneous catalytic hydrogenations, an important class of reactions that are widely utilized in industry to produce pharmaceuticals, agrochemicals, and specialty chemicals.

2.
Environ Sci Technol ; 49(16): 9431-42, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26222014

RESUMO

Advances in industrial ecology, desalination, and resource recovery have established that industrial wastewater, seawater, and brines are important and largely untapped sources of critical metals and elements. A Grand Challenge in metal recovery from industrial wastewater is to design and synthesize high capacity, recyclable and robust chelating ligands with tunable metal ion selectivity that can be efficiently processed into low-energy separation materials and modules. In our efforts to develop high capacity chelating membranes for metal recovery from impaired water, we report a one-pot method for the preparation of a new family of mixed matrix polyvinylidene fluoride (PVDF) membranes with in situ synthesized poly(amidoamine) [PAMAM] particles. The key feature of our new membrane preparation method is the in situ synthesis of PAMAM dendrimer-like particles in the dope solutions prior to membrane casting using low-generation dendrimers (G0 and G1-NH2) with terminal primary amine groups as precursors and epichlorohydrin (ECH) as cross-linker. By using a combined thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) casting process, we successfully prepared a new family of asymmetric PVDF ultrafiltration membranes with (i) neutral and hydrophilic surface layers of average pore diameters of 22-45 nm, (ii) high loadings (∼48 wt %) of dendrimer-like PAMAM particles with average diameters of ∼1.3-2.4 µm, and (iii) matrices with sponge-like microstructures characteristics of membranes with strong mechanical integrity. Preliminary experiments show that these new mixed matrix PVDF membranes can serve as high capacity sorbents for Cu(II) recovery from aqueous solutions by ultrafiltration.


Assuntos
Cobre/isolamento & purificação , Dendrímeros/química , Membranas Artificiais , Polivinil/química , Ultrafiltração/métodos , Água/química , Adsorção , Meio Ambiente , Microscopia Eletrônica de Varredura , Permeabilidade , Espectroscopia Fotoeletrônica , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
3.
Environ Sci Technol ; 49(16): 9390-9, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25894365

RESUMO

The availability and sustainable supply of technology metals and valuable elements is critical to the global economy. There is a growing realization that the development and deployment of the clean energy technologies and sustainable products and manufacturing industries of the 21st century will require large amounts of critical metals and valuable elements including rare-earth elements (REEs), platinum group metals (PGMs), lithium, copper, cobalt, silver, and gold. Advances in industrial ecology, water purification, and resource recovery have established that seawater is an important and largely untapped source of technology metals and valuable elements. This feature article discusses the opportunities and challenges of mining critical metals and elements from seawater. We highlight recent advances and provide an outlook of the future of metal mining and resource recovery from seawater.


Assuntos
Elementos Químicos , Metais/análise , Mineração , Água do Mar/química , Ligantes , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA