Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(11): 2615-2627, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38712594

RESUMO

Controlling stress and deformation induced by thermo-mechanical stimulation in high-precision mechanical systems can be achieved by mechanical metamaterials (MM) exhibiting negative thermal expansion (NTE) and negative Poisson's ratio (NPR). However, the inverse design of MM exhibiting a wide range of arbitrary target NTEs and NPRs is a challenging task due to the low design flexibility of analytical methods and parametric studies based on numerical simulation. In this study, we propose Bézier curve-based programmable chiral mechanical metamaterials (BPCMs) and a deep autoencoder-based inverse design model (DAIM) for the inverse design of BPCMs. Through iterative transfer learning with data augmentation, DAIM can generate BPCMs with a curved rib shape inaccessible with the Bézier curve, which improves the inverse design performance of the DAIM in the data sparse domain. This approach decreases the mean absolute error of NTE and NPR between the inverse design target and the numerical simulation results of inverse designed BPCMs on the data-sparse domain by 79.25% and 83.33% on average, respectively. A 3D-printed BPCM is validated experimentally and exhibits good coincidence with the target NTE and NPR. Our proposed BPCM and the corresponding inverse design framework enable the inverse design of BPCMs with NTE in the range of -1100 to 0 ppm K-1 and NPR in the range of -0.6 to -0.1. Furthermore, programmable thermal deformation modes with a fixed Poisson's ratio are realized by combining various inverse designed BPCM unit cells. BPCMs and the DAIM for their inverse design are expected to improve the mechanical robustness of high-precision mechanical systems through tunable modulation of thermo-mechanical stimulation.

2.
Small ; : e2400484, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564789

RESUMO

Developing a robust artificial intelligence of things (AIoT) system with a self-powered triboelectric sensor for harsh environment is challenging because environmental fluctuations are reflected in triboelectric signals. This study presents an environmentally robust triboelectric tire monitoring system with deep learning to capture driving information in the triboelectric signals generated from tire-road friction. The optimization of the process and structure of a laser-induced graphene (LIG) electrode layer in the triboelectric tire is conducted, enabling the tire to detect universal driving information for vehicles/robotic mobility, including rotation speeds of 200-2000 rpm and contact fractions of line. Employing a hybrid model combining short-term Fourier transform with a convolution neural network-long short-term memory, the LIG-based triboelectric tire monitoring (LTTM) system decouples the driving information, such as traffic lines and road states, from varied environmental conditions of humidity (10%-90%) and temperatures (50-70 °C). The real-time line and road state recognition of the LTTM system is confirmed on a mobile platform across diverse environmental conditions, including fog, dampness, intense sunlight, and heat shimmer. This work provides an environmentally robust monitoring AIoT system by introducing a self-powered triboelectric sensor and hybrid deep learning for smart mobility.

3.
Anim Cells Syst (Seoul) ; 28(1): 161-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686362

RESUMO

Sonic vibration (SV), or vibroacoustic therapy, is applied to enhance local and systemic blood circulation and alleviate pain using low-frequency sine wave vibrations. However, there is limited scientific data on the mechanisms through which the benefits are achieved. In this study, we investigated the impact of SV on inflammatory responses by assessing cytokine secretion in both in vivo and in vitro models. After inducing inflammatory responses in mice and macrophages, we studied cytokine expression and the symptoms of inflammatory diseases in response to three frequencies (14, 45, or 90 Hz) of SV stimulation at 0.5 m/s2 of amplitude. The results showed that SV at 90 Hz significantly increased interelukin-10 (IL-10) secretion in mice who were administered lipopolysaccharides (LPS) and increased the expression of IL-10 transcripts in peritoneal exudate cells and macrophages. Furthermore, SV at 90 Hz improved LPS-induced lethality and alleviated symptoms in a colitis model. In conclusion, this study scientifically proves the anti-inflammatory effects of vibration therapy through its ability to increase IL-10 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA