Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 44(25): 1976-1985, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37352129

RESUMO

Understanding the molecular basis for protein stability requires a thermodynamic analysis of protein folding. Thermodynamic analysis is often performed by sampling many atomistic conformations using molecular simulations that employ either explicit or implicit water models. However, it remains unclear to what extent thermodynamic results from different solvation models are reliable at the molecular level. In this study, we quantify the influence of both solvation models on folding stability at the individual backbone and side chain resolutions. We assess the residue-specific folding free energy components of a ß-sheet protein and a helical protein using trajectories resulting from TIP3P explicit and generalized Born/surface area implicit solvent simulations of model proteins. We found that the thermodynamic discrepancy due to the implicit solvent mostly originates from charged side chains, followed by the under-stabilized hydrophobic ones. In contrast, the contributions of backbone residue in both proteins were comparable for explicit and implicit water models. Our study lays out the foundation for detailed thermodynamic assessment of solvation models in the context of protein simulation.


Assuntos
Dobramento de Proteína , Proteínas , Proteínas/química , Termodinâmica , Simulação por Computador , Solventes/química , Água/química
2.
J Phys Chem B ; 125(26): 7108-7116, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165991

RESUMO

The native structure of a protein is stabilized by a number of interactions such as main-chain hydrogen bonds and side-chain hydrophobic contacts. However, it has been challenging to determine how these interactions contribute to protein stability at single amino acid resolution. Here, we quantified site-specific thermodynamic stability at the molecular level to extend our understanding of the stabilizing forces in protein folding. We derived the free energy components of individual amino acid residues separately for the folding of the human Pin WW domain based on simulated structures. A further decomposition of the thermodynamic properties into contributions from backbone and side-chain groups enabled us to identify the critical residues in the secondary structure and hydrophobic core formation, without introducing physical modifications to the system as in site-directed mutagenesis methods. By relating the structural and thermodynamic changes upon folding for each residue, we find that the simultaneous formation of the backbone hydrogen bonds and side-chain contacts cooperatively stabilizes the folded structure. The identification of stabilizing interactions in a folding protein at atomic resolution will provide molecular insights into understanding the origin of the protein structure and into engineering a more stable protein.


Assuntos
Dobramento de Proteína , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína , Termodinâmica , Domínios WW
3.
J Chem Theory Comput ; 17(3): 1308-1317, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33570937

RESUMO

Kink formation is essential in highly bent DNA complexed with gene regulatory proteins such as histones to release the bending stress stored within the DNA duplex. Local opening of the double-stranded DNA creates a sharp turn along the specific sequence, which leads to the global bending of the DNA strand. Despite the critical role of kink formation, it is still challenging to predict the position of kink formation for a given DNA sequence. In this study, we propose a theoretical model and perform molecular dynamics simulations to quantify the sequence-dependent kink probability of a strongly bent DNA. By incorporating the elastic bending energy and the sequence-specific thermodynamic parameters, we investigate the importance of the DNA sequence on kink formation. We find that the sequence with TA dinucleotide repeats flanked by GC steps increases the kink propensity by more than an order of magnitude under the same bending stress. The number of base pairs involved in the local opening is found to be coupled with the sequence-specific bubble formation free energy. Our study elucidates the molecular origin of the sequence heterogeneity on kink formation, which is fundamental to understanding protein-DNA recognition.


Assuntos
DNA/química , Modelos Químicos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Termodinâmica
4.
Nano Lett ; 21(5): 2339-2346, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33472003

RESUMO

While the neuropathological characteristics of Niemann-Pick disease type C (NPC) result in a fatal diagnosis, the development of clinically available therapeutic agent remains a challenge. Here we propose graphene quantum dots (GQDs) as a potential candidate for the impaired functions in NPC in vivo. In addition to the previous findings that GQDs exhibit negligible long-term toxicity and are capable of penetrating the blood-brain barrier, GQD treatment reduces the aggregation of cholesterol in the lysosome through expressed physical interactions. GQDs also promote autophagy and restore defective autophagic flux, which, in turn, decreases the atypical accumulation of autophagic vacuoles. More importantly, the injection of GQDs inhibits the loss of Purkinje cells in the cerebellum while also demonstrating reduced activation of microglia. The ability of GQDs to alleviate impaired functions in NPC proves the promise and potential of the use of GQDs toward resolving NPC and other related disorders.


Assuntos
Grafite , Doença de Niemann-Pick Tipo C , Pontos Quânticos , Autofagia , Humanos , Lisossomos , Doença de Niemann-Pick Tipo C/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA