Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1162874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066077

RESUMO

Recent studies have shown a direct projection of nociceptive trigeminal afferents into the lateral parabrachial nucleus (LPBN). Information about the synaptic connectivity of these afferents may help understand how orofacial nociception is processed in the LPBN, which is known to be involved primarily in the affective aspect of pain. To address this issue, we investigated the synapses of the transient receptor potential vanilloid 1-positive (TRPV1+) trigeminal afferent terminals in the LPBN by immunostaining and serial section electron microscopy. TRPV1 + afferents arising from the ascending trigeminal tract issued axons and terminals (boutons) in the LPBN. TRPV1+ boutons formed synapses of asymmetric type with dendritic shafts and spines. Almost all (98.3%) TRPV1+ boutons formed synapses with one (82.6%) or two postsynaptic dendrites, suggesting that, at a single bouton level, the orofacial nociceptive information is predominantly transmitted to a single postsynaptic neuron with a small degree of synaptic divergence. A small fraction (14.9%) of the TRPV1+ boutons formed synapses with dendritic spines. None of the TRPV1+ boutons were involved in axoaxonic synapses. Conversely, in the trigeminal caudal nucleus (Vc), TRPV1+ boutons often formed synapses with multiple postsynaptic dendrites and were involved in axoaxonic synapses. Number of dendritic spine and total number of postsynaptic dendrites per TRPV1+ bouton were significantly fewer in the LPBN than Vc. Thus, the synaptic connectivity of the TRPV1+ boutons in the LPBN differed significantly from that in the Vc, suggesting that the TRPV1-mediated orofacial nociception is relayed to the LPBN in a distinctively different manner than in the Vc.

2.
Front Neuroanat ; 17: 1302373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164516

RESUMO

Introduction: Satellite glial cells (SGCs) that envelop the cell bodies of neurons in sensory ganglia have been shown to both release glutamate, and be activated by glutamate in the context of nociceptive signaling. However, little is known about the subpopulations of SGCs that are activated following nerve injury and whether glutamate mechanisms in the SGCs are involved in the pathologic pain. Methods: To address this issue, we used light and electron microscopic immunohistochemistry to examine the change in the glutamate levels in the SGCs and the structural relationship between neighboring neurons in the trigeminal ganglion (TG) in a rat model of craniofacial neuropathic pain, CCI-ION. Results: Administration of ionomycin, ATP and Bz-ATP induced an increase of extracellular glutamate concentration in cultured trigeminal SGCs, indicating a release of glutamate from SGCs. The level of glutamate immunostaining in the SGCs that envelop neurons of all sizes in the TG was significantly higher in rats with CCI-ION than in control rats, suggesting that SGCs enveloping nociceptive as well as non-nociceptive mechanosensitive neurons are activated following nerve injury, and that the glutamate release from SGCs increases in pathologic pain state. Close appositions between substance-P (SP)-immunopositive (+) or calcitonin gene-related peptide (CGRP)+, likely nociceptive neurons, between Piezo1+, likely non-nociceptive, mechanosensitive neurons and SP+ or CGRP+ neurons, and between SGCs of neighboring neurons were frequently observed. Discussion: These findings suggest that glutamate in the trigeminal SGCs that envelop all types of neurons may play a role in the mechanisms of neuropathic pain, possibly via paracrine signaling.

3.
J Endod ; 48(11): 1407-1413, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35952898

RESUMO

INTRODUCTION: Information on the type of vesicular glutamate transporter (VGLUT) that is expressed in the Piezo2-positive (Piezo2+) neurons in the trigeminal ganglion (TG) and on the type of Piezo2+ axons and their distribution in the dental pulp is important for understanding dental pain elicited by mechanical stimuli and developing new therapeutic strategies. METHODS: We examined the expression of Piezo2 and its coexpression with VGLUT1 and VGLUT2 in rat TG, the sensory root, and human dental pulp using light and electron microscopic immunohistochemistry and quantitative analysis. RESULTS: VGLUT1 and VGLUT2 were expressed in the TG neurons. Piezo2 was expressed in axons of all types but primarily in small myelinated (Aδ) axons in the sensory root. In the dental pulp, Piezo2 was expressed densely in the numerous axons that form a plexus in the peripheral pulp. Piezo2+ axons in the peripheral pulp were mostly unmyelinated, and Piezo2 immunoreactivity was often concentrated near the axolemma, suggesting that it may represent functional receptors. CONCLUSIONS: These findings suggest that VGLUT1 and VGLUT2 are involved in the glutamate signaling in Piezo2+ neurons, Piezo2 may be primarily activated by noxious mechanical stimuli, and Piezo2-mediated dental mechanotransduction may be primarily elicited in the peripheral pulp.


Assuntos
Gânglio Trigeminal , Proteínas Vesiculares de Transporte de Glutamato , Ratos , Humanos , Animais , Gânglio Trigeminal/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Polpa Dentária/metabolismo , Mecanotransdução Celular , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Ratos Sprague-Dawley , Glutamatos/metabolismo , Canais Iônicos/metabolismo
4.
Front Mol Neurosci ; 15: 938590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966008

RESUMO

Genetic variations resulting in the loss of function of the discs large homologs (DLG2)/postsynaptic density protein-93 (PSD-93) gene have been implicated in the increased risk for schizophrenia, intellectual disability, and autism spectrum disorders (ASDs). Previously, we have reported that mice lacking exon 14 of the Dlg2 gene (Dlg2 -/- mice) display autistic-like behaviors, including social deficits and increased repetitive behaviors, as well as suppressed spontaneous excitatory postsynaptic currents in the striatum. However, the neural substrate underpinning such aberrant synaptic network activity remains unclear. Here, we found that the corticostriatal synaptic transmission was significantly impaired in Dlg2 -/- mice, which did not seem attributed to defects in presynaptic releases of cortical neurons, but to the reduced number of functional synapses in the striatum, as manifested in the suppressed frequency of miniature excitatory postsynaptic currents in spiny projection neurons (SPNs). Using transmission electron microscopy, we found that both the density of postsynaptic densities and the fraction of perforated synapses were significantly decreased in the Dlg2 -/- dorsolateral striatum. The density of dendritic spines was significantly reduced in striatal SPNs, but notably, not in the cortical pyramidal neurons of Dlg2 -/- mice. Furthermore, a DLG2/PSD-93 deficiency resulted in the compensatory increases of DLG4/PSD-95 and decreases in the expression of TrkA in the striatum, but not particularly in the cortex. These results suggest that striatal dysfunction might play a role in the pathology of psychiatric disorders that are associated with a disruption of the Dlg2 gene.

5.
Front Cell Neurosci ; 16: 945948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846568

RESUMO

Information on the neurons and axons that express the mechanosensitive channel Piezo1 and its expression in axons innervating the dental pulp may help understand the nature of the Piezo1-mediated mechanosensation and the underlying mechanism of dentin sensitivity elicited by mechanical stimuli. For this, we here investigated the neurochemical properties of the neurons in the rat trigeminal ganglion (TG) and their axons in its sensory root that express Piezo1 and the expression of Piezo1 in the rat and human dental pulp by light and electron microscopic immunohistochemistry and quantitative analysis. Piezo1 was expressed mainly in medium-sized and large TG neurons. Piezo1-immunopositive (+) neurons frequently coexpressed the marker for neurons with myelinated axons, NF200, but rarely the markers for neurons with unmyelinated axons, CGRP or IB4. In the sensory root of TG, Piezo1 was expressed primarily in small myelinated axons (Aδ, 60.2%) but also in large myelinated (Aß, 24.3%) and unmyelinated (C, 15.5%) axons. In the human dental pulp, Piezo1 was expressed in numerous NF200+ axons, which formed a network in the peripheral pulp and often "ascended" toward the dentin. Most Piezo1+ myelinated axons in the radicular pulp became unmyelinated in the peripheral pulp, where Piezo1 immunoreaction product was associated with the axonal plasma membrane, suggesting a functional role of Piezo1 in the peripheral pulp. These findings suggest that Piezo1 is involved primarily in mediating the acute pain elicited by high-threshold mechanical stimuli, and that the Piezo1-mediated dental mechanotransduction occurs primarily in the axons in the peripheral pulp.

6.
Front Cell Neurosci ; 16: 858617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370562

RESUMO

Neurons in the rostral nucleus of the solitary tract (rNST) receive taste information from the tongue and relay it mainly to the parabrachial nucleus (PBN) and the medullary reticular formation (RF) through two functionally different neural circuits. To help understand how the information from the rNST neurons is transmitted within these brainstem relay nuclei in the taste pathway, we examined the terminals of the rNST neurons in the PBN and RF by use of anterograde horseradish peroxidase (HRP) labeling, postembedding immunogold staining for glutamate, serial section electron microscopy, and quantitative analysis. Most of the anterogradely labeled, glutamate-immunopositive axon terminals made a synaptic contact with only a single postsynaptic element in PBN and RF, suggesting that the sensory information from rNST neurons, at the individual terminal level, is not passed to multiple target cells. Labeled terminals were usually presynaptic to distal dendritic shafts in both target nuclei. However, the frequency of labeled terminals that contacted dendritic spines was significantly higher in the PBN than in the RF, and the frequency of labeled terminals that contacted somata or proximal dendrites was significantly higher in the RF than in the PBN. Labeled terminals receiving axoaxonic synapses, which are a morphological substrate for presynaptic modulation frequently found in primary sensory afferents, were not observed. These findings suggest that the sensory information from rNST neurons is processed in a relatively simple manner in both PBN and RF, but in a distinctly different manner in the PBN as opposed to the RF.

7.
PLoS Biol ; 18(4): e3000717, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32353004

RESUMO

Extensive evidence links Glutamate receptor, ionotropic, NMDA2B (GRIN2B), encoding the GluN2B/NR2B subunit of N-methyl-D-aspartate receptors (NMDARs), with various neurodevelopmental disorders, including autism spectrum disorders (ASDs), but the underlying mechanisms remain unclear. In addition, it remains unknown whether mutations in GluN2B, which starts to be expressed early in development, induces early pathophysiology that can be corrected by early treatments for long-lasting effects. We generated and characterized Grin2b-mutant mice that carry a heterozygous, ASD-risk C456Y mutation (Grin2b+/C456Y). In Grin2b+/C456Y mice, GluN2B protein levels were strongly reduced in association with decreased hippocampal NMDAR currents and NMDAR-dependent long-term depression (LTD) but unaltered long-term potentiation, indicative of mutation-induced protein degradation and LTD sensitivity. Behaviorally, Grin2b+/C456Y mice showed normal social interaction but exhibited abnormal anxiolytic-like behavior. Importantly, early, but not late, treatment of young Grin2b+/C456Y mice with the NMDAR agonist D-cycloserine rescued NMDAR currents and LTD in juvenile mice and improved anxiolytic-like behavior in adult mice. Therefore, GluN2B-C456Y haploinsufficiency decreases GluN2B protein levels, NMDAR-dependent LTD, and anxiety-like behavior, and early activation of NMDAR function has long-lasting effects on adult mouse behavior.


Assuntos
Ansiedade/genética , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Animais , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Ciclosserina/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Técnicas de Introdução de Genes , Haploinsuficiência/genética , Heterozigoto , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo
8.
J Comp Neurol ; 527(18): 3002-3013, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31168784

RESUMO

That visceral sensory afferents are functionally distinct from their somatic analogues has been known for a long time but the detailed knowledge of their synaptic connections and neurotransmitters at the first relay nucleus in the spinal cord has been limited. To provide information on these topics, we investigated the synapses and neurotransmitters of identified afferents from the urinary bladder to the superficial laminae of the rat spinal dorsal horn (DH) and the spinal parasympathetic nucleus (SPN) by tracing with horseradish peroxidase, quantitative electron microscopical analysis, and immunogold staining for GABA and glycine. In the DH, most bladder afferent boutons formed synapses with 1-2 postsynaptic dendrites, whereas in the SPN, close to a half of them formed synapses with 3-8 postsynaptic dendrites. The number of postsynaptic dendrites and dendritic spines per bladder afferent bouton, both measures of synaptic divergence and of potential for synaptic plasticity at a single bouton level, were significantly higher in the SPN than in the DH. Bladder afferent boutons frequently received inhibitory axoaxonic synapses from presynaptic endings in the DH but rarely in the SPN. The presynaptic endings were GABA- and/or glycine-immunopositive. The bouton volume, mitochondrial volume, and active zone area, all determinants of synaptic strength, of the bladder afferent boutons were positively correlated with the number of postsynaptic dendrites. These findings suggest that visceral sensory information conveyed via the urinary bladder afferents is processed differently in the DH than in the SPN, and differently from the way somatosensory information is processed in the spinal cord.


Assuntos
Neurônios Aferentes/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Sinapses/fisiologia , Bexiga Urinária/fisiologia , Animais , Masculino , Neurônios Aferentes/ultraestrutura , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/ultraestrutura , Sinapses/ultraestrutura , Bexiga Urinária/ultraestrutura
9.
Cell Rep ; 23(13): 3839-3851, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949768

RESUMO

Netrin-G ligand 2 (NGL-2)/LRRC4, implicated in autism spectrum disorders and schizophrenia, is a leucine-rich repeat-containing postsynaptic adhesion molecule that interacts intracellularly with the excitatory postsynaptic scaffolding protein PSD-95 and trans-synaptically with the presynaptic adhesion molecule netrin-G2. Functionally, NGL-2 regulates excitatory synapse development and synaptic transmission. However, whether it regulates synaptic plasticity and disease-related specific behaviors is not known. Here, we report that mice lacking NGL-2 (Lrrc4-/- mice) show suppressed N-Methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the hippocampus. NGL-2 associates with NMDARs through both PSD-95-dependent and -independent mechanisms. Moreover, Lrrc4-/- mice display mild social interaction deficits and repetitive behaviors that are rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-2 promotes synaptic stabilization of NMDARs, regulates NMDAR-dependent synaptic plasticity, and prevents autistic-like behaviors from developing in mice, supporting the hypothesis that NMDAR dysfunction contributes to autism spectrum disorders.


Assuntos
Transtorno Autístico/patologia , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno Autístico/metabolismo , Ciclosserina/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/metabolismo , Complexo de Golgi/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Plasticidade Neuronal/efeitos dos fármacos , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Aprendizagem Espacial , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
10.
J Neurosci ; 38(26): 5872-5887, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29798891

RESUMO

SALM1 (SALM (synaptic adhesion-like molecule), also known as LRFN2 (leucine rich repeat and fibronectin type III domain containing), is a postsynaptic density (PSD)-95-interacting synaptic adhesion molecule implicated in the regulation of NMDA receptor (NMDAR) clustering largely based on in vitro data, although its in vivo functions remain unclear. Here, we found that mice lacking SALM1/LRFN2 (Lrfn2-/- mice) show a normal density of excitatory synapses but altered excitatory synaptic function, including enhanced NMDAR-dependent synaptic transmission but suppressed NMDAR-dependent synaptic plasticity in the hippocampal CA1 region. Unexpectedly, SALM1 expression was detected in both glutamatergic and GABAergic neurons and Lrfn2-/- CA1 pyramidal neurons showed decreases in the density of inhibitory synapses and the frequency of spontaneous inhibitory synaptic transmission. Behaviorally, ultrasonic vocalization was suppressed in Lrfn2-/- pups separated from their mothers and acoustic startle was enhanced, but locomotion, anxiety-like behavior, social interaction, repetitive behaviors, and learning and memory were largely normal in adult male Lrfn2-/- mice. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, and social communication and startle behaviors in mice.SIGNIFICANCE STATEMENT Synaptic adhesion molecules regulate synapse development and function, which govern neural circuit and brain functions. The SALM/LRFN (synaptic adhesion-like molecule/leucine rich repeat and fibronectin type III domain containing) family of synaptic adhesion proteins consists of five known members for which the in vivo functions are largely unknown. Here, we characterized mice lacking SALM1/LRFN2 (SALM1 KO) known to associate with NMDA receptors (NMDARs) and found that these mice showed altered NMDAR-dependent synaptic transmission and plasticity, as expected, but unexpectedly also exhibited suppressed inhibitory synapse development and synaptic transmission. Behaviorally, SALM1 KO pups showed suppressed ultrasonic vocalization upon separation from their mothers and SALM1 KO adults showed enhanced responses to loud acoustic stimuli. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, social communication, and acoustic startle behavior.


Assuntos
Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Reflexo de Sobressalto/fisiologia , Vocalização Animal/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comportamento Social , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
11.
Brain Struct Funct ; 223(5): 2259-2268, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29460053

RESUMO

The neurons in the trigeminal mesencephalic nucleus (Vmes) innervate jaw-closing muscle spindles and periodontal ligaments, and play a crucial role in the regulation of jaw movements. Recently, it was shown that many boutons that form synapses on them are immunopositive for glycine (Gly+), suggesting that these neurons receive glycinergic input. Information about the glycine receptors that mediate this input is needed to help understand the role of glycine in controlling Vmes neuron excitability. For this, we investigated the expression of glycine receptor subunit alpha 3 (GlyRα3) and gephyrin in neurons in Vmes and the trigeminal motor nucleus (Vmo), and the Gly+ boutons that contact them by light- and electron-microscopic immunocytochemistry and quantitative ultrastructural analysis. The somata of the Vmes neurons were immunostained for GlyRα3, but not gephyrin, indicating expression of homomeric GlyR. The immunostaining for GlyRα3 was localized away from the synapses in the Vmes neuron somata, in contrast to the Vmo neurons, where the staining for GlyRα3 and gephyrin were localized at the subsynaptic zones in somata and dendrites. Additionally, the ultrastructural determinants of synaptic strength, bouton volume, mitochondrial volume, and active zone area, were significantly smaller in Gly+ boutons on the Vmes neurons than in those on the Vmo neurons. These findings support the notion that the Vmes neurons receive glycinergic input via putative extrasynaptic homomeric glycine receptors, likely mediating a slow, tonic modulation of the Vmes neuron excitability.


Assuntos
Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de Glicina/metabolismo , Núcleo Motor do Nervo Trigêmeo/citologia , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Dendritos/ultraestrutura , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Microscopia Confocal , Microscopia Imunoeletrônica , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptores de Glicina/ultraestrutura , Núcleo Motor do Nervo Trigêmeo/diagnóstico por imagem
12.
Front Mol Neurosci ; 10: 81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28381988

RESUMO

Copy number variants and point mutations of NEPH2 (also called KIRREL3) gene encoding an immunoglobulin (Ig) superfamily adhesion molecule have been linked to autism spectrum disorders, intellectual disability and neurocognitive delay associated with Jacobsen syndrome, but the physiological roles of Neph2 in the mammalian brain remain largely unknown. Neph2 is highly expressed in the dentate granule (DG) neurons of the hippocampus and is localized in both dendrites and axons. It was recently shown that Neph2 is required for the formation of mossy fiber filopodia, the axon terminal structure of DG neurons forming synapses with GABAergic neurons of CA3. In contrast, however, it is unknown whether Neph2 also has any roles in the postsynaptic compartments of DG neurons. We here report that, through its C-terminal PDZ domain-binding motif, Neph2 directly interacts with postsynaptic density (PSD)-95, an abundant excitatory postsynaptic scaffolding protein. Moreover, Neph2 protein is detected in the brain PSD fraction and interacts with PSD-95 in synaptosomal lysates. Functionally, loss of Neph2 in mice leads to age-specific defects in the synaptic connectivity of DG neurons. Specifically, Neph2-/- mice show significantly increased spontaneous excitatory synaptic events in DG neurons at postnatal week 2 when the endogenous Neph2 protein expression peaks, but show normal excitatory synaptic transmission at postnatal week 3. The evoked excitatory synaptic transmission and synaptic plasticity of medial perforant pathway (MPP)-DG synapses are also normal in Neph2-/- mice at postnatal week 3, further confirming the age-specific synaptic defects. Together, our results provide some evidence for the postsynaptic function of Neph2 in DG neurons during the early postnatal period, which might be implicated in neurodevelopmental and cognitive disorders caused by NEPH2 mutations.

13.
J Neurosci ; 36(48): 12129-12143, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903723

RESUMO

Shank2 is a multidomain scaffolding protein implicated in the structural and functional coordination of multiprotein complexes at excitatory postsynaptic sites as well as in psychiatric disorders, including autism spectrum disorders. While Shank2 is strongly expressed in the cerebellum, whether Shank2 regulates cerebellar excitatory synapses, or contributes to the behavioral abnormalities observed in Shank2-/- mice, remains unexplored. Here we show that Shank2-/- mice show reduced excitatory synapse density in cerebellar Purkinje cells in association with reduced levels of excitatory postsynaptic proteins, including GluD2 and PSD-93, and impaired motor coordination in the Erasmus test. Shank2 deletion restricted to Purkinje cells (Pcp2-Cre;Shank2fl/fl mice) leads to similar reductions in excitatory synapse density, synaptic protein levels, and motor coordination. Pcp2-Cre;Shank2fl/fl mice do not recapitulate autistic-like behaviors observed in Shank2-/- mice, such as social interaction deficits, altered ultrasonic vocalizations, repetitive behaviors, and hyperactivity. However, Pcp2-Cre;Shank2fl/fl mice display enhanced repetitive behavior in the hole-board test and anxiety-like behavior in the light-dark test, which are not observed in Shank2-/- mice. These results implicate Shank2 in the regulation of cerebellar excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. SIGNIFICANCE STATEMENT: The postsynaptic side of excitatory synapses contains multiprotein complexes, termed the postsynaptic density, which contains receptors, scaffolding/adaptor proteins, and signaling molecules. Shank2 is an excitatory postsynaptic scaffolding protein implicated in the formation and functional coordination of the postsynaptic density and has been linked to autism spectrum disorders. Using Shank2-null mice and Shank2-conditional knock-out mice with a gene deletion restricted to cerebellar Purkinje cells, we explored functions of Shank2 in the cerebellum. We found that Shank2 regulates excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors, but is not associated with autistic-like social deficits or repetitive behaviors.


Assuntos
Ansiedade/fisiopatologia , Cerebelo/fisiopatologia , Transtornos Traumáticos Cumulativos/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Desempenho Psicomotor/fisiologia , Sinapses/patologia , Animais , Comportamento Animal/fisiologia , Contagem de Células , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Sinapses/fisiologia
14.
Neuroscience ; 335: 54-63, 2016 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-27555550

RESUMO

Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K+channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. We also examined the glutamate release from odontoblast in cell culture. Odontoblasts were enriched with glutamate, at the level as high as in adjacent pulpal axons, and showed immunoreactivity for TRPV1, TRPA1, and TREK-1. Pulpal sensory axons adjacent to odontoblasts expressed mGluR5. Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity.


Assuntos
Axônios/metabolismo , Polpa Dentária/metabolismo , Dentina/lesões , Odontoblastos/metabolismo , Animais , Polpa Dentária/lesões , Ácido Glutâmico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo
15.
Nat Commun ; 7: 12328, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27480238

RESUMO

Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4(-/-)) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4(-/-) mice (Salm3(-/-); Salm4(-/-)) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3-LAR adhesion.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Adesão Celular/fisiologia , Moléculas de Adesão Celular Neuronais/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa/genética , Transmissão Sináptica/fisiologia
16.
Cell Rep ; 14(4): 808-822, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26776509

RESUMO

The four members of the LRRTM family (LRRTM1-4) are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG) granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.


Assuntos
Processamento Alternativo , Moléculas de Adesão Celular Neuronais/metabolismo , Potenciais Pós-Sinápticos Excitadores , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Transporte Proteico , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
17.
Nat Neurosci ; 18(3): 435-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25622145

RESUMO

Social deficits are observed in diverse psychiatric disorders, including autism spectrum disorders and schizophrenia. We found that mice lacking the excitatory synaptic signaling scaffold IRSp53 (also known as BAIAP2) showed impaired social interaction and communication. Treatment of IRSp53(-/-) mice, which display enhanced NMDA receptor (NMDAR) function in the hippocampus, with memantine, an NMDAR antagonist, or MPEP, a metabotropic glutamate receptor 5 antagonist that indirectly inhibits NMDAR function, normalized social interaction. This social rescue was accompanied by normalization of NMDAR function and plasticity in the hippocampus and neuronal firing in the medial prefrontal cortex. These results, together with the reduced NMDAR function implicated in social impairments, suggest that deviation of NMDAR function in either direction leads to social deficits and that correcting the deviation has beneficial effects.


Assuntos
Regulação da Expressão Gênica/fisiologia , Mutação/genética , Proteínas do Tecido Nervoso/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transtornos do Comportamento Social/genética , Animais , Animais Recém-Nascidos , Estudos de Casos e Controles , Células Cultivadas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Asseio Animal/efeitos dos fármacos , Asseio Animal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/ultraestrutura , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Transtornos do Comportamento Social/tratamento farmacológico , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia
18.
J Comp Neurol ; 523(1): 126-38, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25185935

RESUMO

Substance P (SP), calcitonin gene-related peptide (CGRP), and isolectin B4 (IB4) are widely used as markers for peripheral neurons with unmyelinated fibers, whereas neurofilament 200 (NF200), and Peripherin are used as markers for neurons with myelinated fibers, and with unmyelinated or small-caliber fibers, respectively. To study the selectivity of these markers for specific neuronal types, we analyzed their expression in neurons in the rat trigeminal ganglion by light- and electron-microscopic immunocytochemistry. Most SP-immunopositive (+), CGRP+, and IB4+ fibers were unmyelinated, but a small fraction (∼5%) were small myelinated fibers (<20 µm(2) in cross-sectional area, equivalent to <5 µm in diameter, Aδ fiber). Similarly, whereas the majority of NF200+ fibers were myelinated, a large fraction (23.9%) were unmyelinated, and whereas the majority of Peripherin+ fibers were unmyelinated and small myelinated, a significant fraction (15.5%) were large myelinated (>20 µm(2) in cross-sectional area, equivalent to >5 µm in diameter, Aß fiber). Our findings confirm that SP, CGRP, and IB4 can be used as reliable markers for neurons with unmyelinated fibers, and question the suitability of NF200 as a marker for neurons with myelinated fibers, and of Peripherin as a marker for neurons with unmyelinated, or fine-caliber fibers.


Assuntos
Neurônios Aferentes/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Tamanho Celular , Imuno-Histoquímica , Lectinas/metabolismo , Masculino , Microscopia Eletrônica , Fibras Nervosas Mielinizadas/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios Aferentes/citologia , Fragmentos de Peptídeos/metabolismo , Periferinas/metabolismo , Ratos Sprague-Dawley , Substância P/metabolismo , Gânglio Trigeminal/citologia
19.
PLoS One ; 9(10): e109723, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290694

RESUMO

BACKGROUND: There is increasing evidence that peripheral glutamate signaling mechanism is involved in the nociceptive transmission during pathological conditions. However, little is known about the glutamate signaling mechanism and related specific type of vesicular glutamate transporter (VGLUT) in the dental pulp following inflammation. To address this issue, we investigated expression and protein levels of VGLUT1 and VGLUT2 in the dental pulp and trigeminal ganglion (TG) following complete Freund's adjuvant (CFA) application to the rat dental pulp by light microscopic immunohistochemistry and Western blot analysis. RESULTS: The density of VGLUT2- immunopositive (+) axons in the dental pulp and the number of VGLUT2+ soma in the TG increased significantly in the CFA-treated group, compared to control group. The protein levels of VGLUT2 in the dental pulp and TG were also significantly higher in the CFA-treated group than control group by Western blot analysis. The density of VGLUT1+ axons in the dental pulp and soma in the TG remained unchanged in the CFA-treated group. CONCLUSIONS: These findings suggest that glutamate signaling that is mediated by VGLUT2 in the pulpal axons may be enhanced in the inflamed dental pulp, which may contribute to pulpal axon sensitization leading to hyperalgesia following inflammation.


Assuntos
Axônios/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Hiperalgesia/genética , Inflamação/genética , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Animais , Axônios/metabolismo , Axônios/patologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Polpa Dentária/fisiopatologia , Adjuvante de Freund/administração & dosagem , Regulação da Expressão Gênica , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/complicações , Inflamação/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
20.
Neuron ; 77(4): 680-95, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23439121

RESUMO

Troyer syndrome is a hereditary spastic paraplegia caused by human spartin (SPG20) gene mutations. We have generated a Drosophila disease model showing that Spartin functions presynaptically with endocytic adaptor Eps15 to regulate synaptic growth and function. Spartin inhibits bone morphogenetic protein (BMP) signaling by promoting endocytic degradation of BMP receptor wishful thinking (Wit). Drosophila fragile X mental retardation protein (dFMRP) and Futsch/MAP1B are downstream effectors of Spartin and BMP signaling in regulating microtubule stability and synaptic growth. Loss of Spartin or elevation of BMP signaling induces age-dependent progressive defects resembling hereditary spastic paraplegias, including motor dysfunction and brain neurodegeneration. Null spartin phenotypes are prevented by administration of the microtubule-destabilizing drug vinblastine. Together, these results demonstrate that Spartin regulates both synaptic development and neuronal survival by controlling microtubule stability via the BMP-dFMRP-Futsch pathway, suggesting that impaired regulation of microtubule stability is a core pathogenic component in Troyer syndrome.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/genética , Microtúbulos/metabolismo , Neurônios/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Animais , Sequência de Bases/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Sobrevivência Celular , Drosophila/genética , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Neurônios/citologia , Ligação Proteica/fisiologia , Transdução de Sinais/genética , Paraplegia Espástica Hereditária/genética , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA