Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6675): eadf3208, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060659

RESUMO

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Assuntos
Envelhecimento , MAP Quinase Quinase Quinase 3 , Obesidade , Espécies Reativas de Oxigênio , Ribossomos , Estresse Fisiológico , Animais , Camundongos , Envelhecimento/metabolismo , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Obesidade/metabolismo , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Ribossomos/metabolismo , Peixe-Zebra , Camundongos Knockout
2.
Gut ; 72(3): 460-471, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36008102

RESUMO

OBJECTIVE: Bariatric surgery is an effective treatment for type 2 diabetes (T2D) that changes gut microbial composition. We determined whether the gut microbiota in humans after restrictive or malabsorptive bariatric surgery was sufficient to lower blood glucose. DESIGN: Women with obesity and T2D had biliopancreatic diversion with duodenal switch (BPD-DS) or laparoscopic sleeve gastrectomy (LSG). Faecal samples from the same patient before and after each surgery were used to colonise rodents, and determinants of blood glucose control were assessed. RESULTS: Glucose tolerance was improved in germ-free mice orally colonised for 7 weeks with human microbiota after either BPD-DS or LSG, whereas food intake, fat mass, insulin resistance, secretion and clearance were unchanged. Mice colonised with microbiota post-BPD-DS had lower villus height/width and crypt depth in the distal jejunum and lower intestinal glucose absorption. Inhibition of sodium-glucose cotransporter (Sglt)1 abrogated microbiota-transmissible improvements in blood glucose control in mice. In specific pathogen-free (SPF) rats, intrajejunal colonisation for 4 weeks with microbiota post-BPD-DS was sufficient to improve blood glucose control, which was negated after intrajejunal Sglt-1 inhibition. Higher Parabacteroides and lower Blautia coincided with improvements in blood glucose control after colonisation with human bacteria post-BPD-DS and LSG. CONCLUSION: Exposure of rodents to human gut microbiota after restrictive or malabsorptive bariatric surgery improves glycaemic control. The gut microbiota after bariatric surgery is a standalone factor that alters upper gut intestinal morphology and lowers Sglt1-mediated intestinal glucose absorption, which improves blood glucose control independently from changes in obesity, insulin or insulin resistance.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Obesidade Mórbida , Humanos , Feminino , Ratos , Camundongos , Animais , Glucose , Diabetes Mellitus Tipo 2/cirurgia , Obesidade/cirurgia , Gastrectomia , Obesidade Mórbida/cirurgia
3.
Food Chem Toxicol ; 146: 111832, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33129933

RESUMO

The dramatic rise in the global occurrence of obesity and associated diseases calls for new strategies to promote weight loss. However, while the beneficial effects of weight loss are well known, rapid loss of fat mass can also lead to the endogenous release of liposoluble molecules with potential harmful effects, such as persistent organic pollutants (POP). The aim of this study was to evaluate the impact of a polyphenol-rich cranberry extract (CE) on POP release and their potential deleterious effects during weight loss of obese mice. C57BL/6 J mice were fed an obesogenic diet with or without a mixture of POP for 12 weeks and then changed to a low-fat diet to induce weight loss and endogenous POP release. The POP-exposed mice were then separated in two groups during weight loss, receiving either CE or the vehicle. Unexpectedly, despite the higher fat loss in the CE-treated group, the circulating levels of POP were not enhanced in these mice. Moreover, glucose homeostasis was further improved during CE-induced weight loss, as revealed by lower fasting glycemia and improved glucose tolerance as compared to vehicle-treated mice. Interestingly, the CE extract also induced changes in the gut microbiota after weight loss in POP-exposed mice, including blooming of Parvibacter, a member of the Coriobacteriaceae family which has been predicted to play a role in xenobiotic metabolism. Our data thus suggests that the gut microbiota can be targeted by polyphenol-rich extracts to protect from increased POP exposure and their detrimental metabolic effects during rapid weight loss.


Assuntos
Obesidade/induzido quimicamente , Compostos Orgânicos/toxicidade , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vaccinium macrocarpon/química , Redução de Peso , Animais , Bactérias/genética , Gorduras na Dieta/administração & dosagem , Poluentes Ambientais , Contaminação de Alimentos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Extratos Vegetais/química , Polifenóis/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA