Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 16010-16019, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805019

RESUMO

Flash Joule heating has emerged as an ultrafast, scalable, and versatile synthesis method for nanomaterials, such as graphene. Here, we experimentally and theoretically deconvolute the contributions of thermal and electrical processes to the synthesis of graphene by flash Joule heating. While traditional methods of graphene synthesis involve purely chemical or thermal driving forces, our results show that the presence of charge and the resulting electric field in a graphene precursor catalyze the formation of graphene. Furthermore, modulation of the current or the pulse width affords the ability to control the three-step phase transition of the material from amorphous carbon to turbostratic graphene and finally to ordered (AB and ABC-stacked) graphene and graphite. Finally, density functional theory simulations reveal that the presence of a charge- and current-induced electric field inside the graphene precursor facilitates phase transition by lowering the activation energy of the reaction. These results demonstrate that the passage of electrical current through a solid sample can directly drive nanocrystal nucleation in flash Joule heating, an insight that may inform future Joule heating or other electrical synthesis strategies.

2.
Adv Mater ; 36(15): e2309956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305742

RESUMO

Nanoscale metallic glasses offer opportunities for investigating fundamental properties of amorphous solids and technological applications in biomedicine, microengineering, and catalysis. However, their top-down fabrication is limited by bulk counterpart availability, and bottom-up synthesis remains underexplored due to strict formation conditions. Here, a kinetically controlled flash carbothermic reaction is developed, featuring ultrafast heating (>105 K s-1) and cooling rates (>104 K s-1), for synthesizing metallic glass nanoparticles within milliseconds. Nine compositional permutations of noble metals, base metals, and metalloid (M1─M2─P, M1 = Pt/Pd, M2 = Cu/Ni/Fe/Co/Sn) are synthesized with widely tunable particle sizes and substrates. Through combinatorial development, a substantially expanded composition space for nanoscale metallic glass is discovered compared to bulk counterpart, revealing that the nanosize effect enhances glass forming ability. Leveraging this, several nanoscale metallic glasses are synthesized with composition that have never, to the knowledge, been synthesized in bulk. The metallic glass nanoparticles exhibit high activity in heterogeneous catalysis, outperforming crystalline metal alloy nanoparticles.

3.
Nat Commun ; 15(1): 479, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212317

RESUMO

Bismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO3 thin films have typically been deposited at relatively high temperatures (650-800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO3 at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPb0.75Bi0.25O3 electrodes. Notwithstanding the large lattice mismatch between the La-BiFeO3, BaPb0.75Bi0.25O3, and SrTiO3 (001) substrates, all the layers in the heterostructures are well ordered with a [001] texture. Polarization mapping using atomic resolution STEM imaging and vector mapping established the short-range polarization ordering in the low temperature grown La-BiFeO3. Current-voltage, pulsed-switching, fatigue, and retention measurements follow the characteristic behavior of high-temperature grown La-BiFeO3, where SrRuO3 typically serves as the metallic electrode. These results provide a possible route for realizing epitaxial multiferroics on complex-oxide buffer layers at low temperatures and opens the door for potential silicon-CMOS integration.

4.
Small Methods ; 8(3): e2301144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009769

RESUMO

The flash Joule heating (FJH) method converts many carbon feedstocks into graphene in milliseconds to seconds using an electrical pulse. This opens an opportunity for processing low or negative value resources, such as coal and plastic waste, into high value graphene. Here, a lab-scale automation FJH system that allows the synthesis of 1.1 kg of turbostratic flash graphene from coal-based metallurgical coke (MC) in 1.5 h is demonstrated. The process is based on the automated conversion of 5.7 g of MC per batch using an electrical pulse width modulation system to conduct the bottom-up upcycle of MC into flash graphene. This study then compare this method to two other scalable graphene synthesis techniques by both a life cycle assessment and a technoeconomic assessment.

5.
Sci Adv ; 9(39): eadh5131, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756404

RESUMO

The staggering accumulation of end-of-life lithium-ion batteries (LIBs) and the growing scarcity of battery metal sources have triggered an urgent call for an effective recycling strategy. However, it is challenging to reclaim these metals with both high efficiency and low environmental footprint. We use here a pulsed dc flash Joule heating (FJH) strategy that heats the black mass, the combined anode and cathode, to >2100 kelvin within seconds, leading to ~1000-fold increase in subsequent leaching kinetics. There are high recovery yields of all the battery metals, regardless of their chemistries, using even diluted acids like 0.01 M HCl, thereby lessening the secondary waste stream. The ultrafast high temperature achieves thermal decomposition of the passivated solid electrolyte interphase and valence state reduction of the hard-to-dissolve metal compounds while mitigating diffusional loss of volatile metals. Life cycle analysis versus present recycling methods shows that FJH significantly reduces the environmental footprint of spent LIB processing while turning it into an economically attractive process.

6.
Adv Mater ; 35(48): e2306763, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37694496

RESUMO

Hydrogen gas (H2 ) is the primary storable fuel for pollution-free energy production, with over 90 million tonnes used globally per year. More than 95% of H2 is synthesized through metal-catalyzed steam methane reforming that produces 11 tonnes of carbon dioxide (CO2 ) per tonne H2 . "Green H2 " from water electrolysis using renewable energy evolves no CO2 , but costs 2-3× more, making it presently economically unviable. Here catalyst-free conversion of waste plastic into clean H2 along with high purity graphene is reported. The scalable procedure evolves no CO2 when deconstructing polyolefins and produces H2 in purities up to 94% at high mass yields. The sale of graphene byproduct at just 5% of its current value yields H2 production at a negative cost. Life-cycle assessment demonstrates a 39-84% reduction in emissions compared to other H2 production methods, suggesting the flash H2 process to be an economically viable, clean H2 production route.

7.
ACS Nano ; 17(3): 2506-2516, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36693241

RESUMO

Hybrid carbon nanomaterials, such as those that incorporate carbon nanotubes into graphene sheets, have been found to display interesting mechanical and electrical properties because of their covalent bonding and π-π stacking domains. However, synthesis of these hybrid materials is limited by the high energetic cost of techniques like chemical vapor deposition. Here, we demonstrate the solvent- and gas-free synthesis of a 2D carbon nanotube/graphene network through flash Joule heating of pristine carbon nanotubes. The relative proportion of each morphology in the hybrid material can be tuned by varying the pulse time, as confirmed by Raman spectroscopy and microscopy. Triboindentation of epoxy composites made with the hybrid material shows increases of 162% and 64% to the hardness and Young's modulus, respectively, compared with the neat epoxy. These results demonstrate that flash Joule heating can be used to inexpensively convert carbon nanotubes into a hybrid network of nanotubes and graphene for use as an effective reinforcing additive in epoxy composites.

8.
Adv Mater ; 34(33): e2202666, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748868

RESUMO

Turbostratic layers in 2D materials have an interlayer misalignment. The lack of alignment expands the intrinsic interlayer distances and weakens the optical and electronic interactions between adjacent layers. This introduces properties distinct from those structures with well-aligned lattices and strong coupling interactions. However, direct and rapid synthesis of turbostratic materials remains a challenge owing to their thermodynamically metastable properties. Here, a flash Joule heating (FJH) method to achieve bulk synthesis of boron-carbon-nitrogen ternary compounds with turbostratic structures by a kinetically controlled ultrafast cooling process that takes place within milliseconds (103  to 104 K s-1 ) is reported. Theoretical calculations support the existence of turbostratic structures and provide estimates of the energy barriers with respect to conversion into the corresponding well-aligned counterparts. When using non-carbon conductive additives, a direct synthesis of boron nitride is possible. The turbostratic nature facilitates mechanical exfoliation and more stable dispersions. Accordingly, the addition of flash products to a poly(vinyl alcohol) nanocomposite film coating a copper surface greatly improves the copper's resistance to corrosion in 0.5 m sulfuric acid or 3.5 wt% saline solution. FJH allows the use of bulk materials as reactants and provides a rapid approach to large quantities of the hitherto hard-to-access turbostratic materials.

9.
Nanoscale ; 11(48): 23234-23240, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31782461

RESUMO

Plasmonic hot carrier generation has attracted increasing attention due to its ability to convert light to electrical energy. The generation of plasmon-induced hot carriers can be achieved via Landau damping in the non-radiative decay process of the plasmonic excitation energy. Localized surface plasmons (LSPs) undergo both radiative and non-radiative decays, while surface plasmon polaritons (SPPs) dissipate only via the non-radiative decay. Thus, it is a challenging task to exploit the surface plasmon polaritons for the efficient generation of hot carriers and their applications. In this study, a model hot-carrier-mediated electrocatalytic conversion system was demonstrated using an Au thin film in Kretschmann configuration, which is the representative platform to excite SPPs. AgPt-decorated Au nanobipyramids (AuNBPs) were designed and introduced onto the Au film, creating hot-spots to revolutionize the thin film-based photon-to-carrier conversion efficiency. The glycerol electro-oxidation reaction enabled by such SPP-induced hot carriers was evaluated and exhibited a photon-to-hot carrier conversion efficiency of 2.4 × 10-3%, which is ∼2.5 times enhanced as compared to the efficiency based on the neat Au film.

10.
Korean J Intern Med ; 20(1): 96-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15906963

RESUMO

The association between aplastic crisis and human parvovirus (HPV) B19 infection is well described in patients with sickle cell anemia. This association has also been described, although much less frequently, in patients with hereditary spherocytosis (HS). However, most cases of aplastic crises in patients with HS and induced by HPV B19 have been reported in children or adolescents. In this paper, we describe an aplastic crisis induced by HPV B19 in an adult with HS. A 34-year-old female presented with presyncope, febrile sensation, and myalgia. The complete blood counts showed severe anemia. The peripheral blood smear revealed spherocytosis with reticulocytopenia and pancytopenia. The direct Coombs' test was negative; the osmotic fragility test was positive. In the bone marrow aspirates, a few giant pronormoblasts with deep blue cytoplasm, pseudopods, and intracellular inclusion bodies were observed. The patient was given eight units of packed red blood cells. HPV B19 infection was proven by the presence of IgM antibodies to HPV B19 and the detection of viral DNA using the PCR technique. To the best of our knowledge, this is the first report in Korea that describes an adult with aplastic crisis presenting initially with HS.


Assuntos
Anemia Aplástica/etiologia , Infecções por Parvoviridae/complicações , Esferocitose Hereditária/diagnóstico , Adulto , Feminino , Humanos , Infecções por Parvoviridae/diagnóstico , Parvovirus B19 Humano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA