Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36830981

RESUMO

BACKGROUND: This study aimed to investigate the effect of the vibration of osteoblasts on the cell cycle, cell differentiation, and aging. MATERIALS AND METHODS: Primary maxilla osteoblasts harvested from eight-week-old mice were subjected to vibration at 3, 30, and 300 Hz once daily for 30 min; control group, 0 Hz. A cell proliferation assay and Cell-Clock Cell Cycle Assay were performed 24 h after vibration. Osteoblast differentiation assay, aging marker genes, SA-ß-Gal activity, and telomere length (qPCR) were assayed two weeks post- vibration once every two days. RESULTS: Cell proliferation increased significantly at 30 and 300 Hz rather than 0 Hz. Several cells were in the late G2/M stage of the cell cycle at 30 Hz. The osteoblast differentiation assay was significantly higher at 30 Hz than at 0 Hz. Runx2 mRNA was downregulated at 30 Hz compared to that at 0 Hz, while osteopontin, osteocalcin, and sclerostin mRNA were upregulated. p53/p21, p16, and c-fos were activated at 30 Hz. SA-ß-Gal activity increased significantly at 30 or 300 Hz. Telomere length was significantly lower at 30 or 300 Hz. CONCLUSIONS: The results suggest that providing optimal vibration to osteoblasts promotes cell cycle progression and differentiation and induces cell aging.

2.
Nat Commun ; 11(1): 5896, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214548

RESUMO

The process of memory and learning in biological systems is multimodal, as several kinds of input signals cooperatively determine the weight of information transfer and storage. This study describes a peptide-based platform of materials and devices that can control the coupled conduction of protons and electrons and thus create distinct regions of synapse-like performance depending on the proton activity. We utilized tyrosine-rich peptide-based films and generalized our principles by demonstrating both memristor and synaptic devices. Interestingly, even memristive behavior can be controlled by both voltage and humidity inputs, learning and forgetting process in the device can be initiated and terminated by protons alone in peptide films. We believe that this work can help to understand the mechanism of biological memory and lay a foundation to realize a brain-like device based on ions and electrons.


Assuntos
Materiais Biomiméticos/química , Memória/fisiologia , Peptídeos/química , Prótons , Biomimética , Eletroquímica , Elétrons , Umidade , Aprendizagem/fisiologia , Sinapses/fisiologia , Transistores Eletrônicos , Tirosina/química
3.
RSC Adv ; 9(63): 36960-36966, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35539088

RESUMO

Recently, electronic skin that mimics human skin in measuring tactile stimuli, temperature, and humidity and having a self-healing function was developed. Furthermore, with the advances in the field of artificial intelligence and health monitoring, various materials and methods have been studied for e-skin. The limitations to work on actual human skin include device flexibility and large-area applications through array structures, and many studies are underway to overcome these problems. Polymeric materials containing ionic liquids can be used to easily fabricate devices in the solid state. They are highly sensitive to both pressure and temperature, making them suitable for multi-sensing devices. Resistive and capacitive sensors have the advantage of having a simple structure, which makes them easy to fabricate. In a single device, both types work well. For resistive sensors, the temperature sensitivity (1.1/°C) is relatively high. Conversely, capacitive sensors have a low temperature sensitivity (0.3/°C). However, they have the advantage of being uniformly variable under each condition and having a smaller error range. In the array structure, independent flex and thermo sensors are arranged repeatedly. The resistive type shows changes in temperature and bending, but in the capacitive type, it is difficult to obtain results from the pixels due to parasitic capacitance.

4.
ACS Appl Mater Interfaces ; 10(37): 31472-31479, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30141319

RESUMO

The development of a highly sensitive artificial mechanotransducer that mimics the tactile sensing features of human skin has been a big challenge in electronic skin research. Here, we demonstrate an ultrasensitive, low-power oxide transistor-based mechanotransducer modulated by microstructured, deformable ionic dielectrics, which is consistently sensitive to a wide range of pressures from 1 to 50 kPa. To this end, we designed a viscoporoelastic and ionic thermoplastic polyurethane (i-TPU) with micropyramidal feature as a pressure-sensitive gate dielectric for the indium-gallium-zinc-oxide (IGZO) transistor-based mechanotransducer, which leads to an unprecedented sensitivity of 43.6 kPa-1, which is 23 times higher than that of a capacitive mechanotransducer. This is because the pressure-induced ion accumulation at the interface of the i-TPU dielectric and IGZO semiconductor effectively modulates the conducting channel, which contributed to the enhanced current level under pressure. We believe that the ionic transistor-type mechanotransducer suggested by us will be an effective way to perceive external tactile stimuli over a wide pressure range even under low power (<4 V), which might be one of the candidates to directly emulate the tactile sensing capability of human skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA