Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 89(1): 370-389, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983872

RESUMO

High-temperature (15-37°C) aging can shorten the tenderizing time of beef; however, the use of constant temperature heating can lead to microbial spoilage. This study tested radiofrequency (RF) tenderization (RF-T) to find the appropriate conditions for the aging-like effect of beef without microbial spoilage. After subjecting beef to 22 h RF-T with four different cooling temperatures (15, 5, -10, and -20°C), the proliferated aerobic bacteria on the surface showed a concentration of 6-6.2 log CFU/g at -10 and -20°C, lower than 7-7.5 log CFU/g at 15 and 5°C. When beef was treated with 25 W/kg RF heating power for 48 h RF-T, the estimated reduction rate of the sliced shear force (SSF) and the increase rate of glutamic acid based on the weight before RF-T were 22.6% and 1.51-fold, which were greater than 19.6% and 1.37-fold with 20 W/kg, and 11.0% and 1.11-fold with 15 W/kg. The optimal specific RF heating power was calculated as 30 W/kg from the results' extrapolation. When processed for 48 h under optimal conditions (30 W/kg specific RF heating power, -20°C cooling air), the tenderization rate and the increased rates of free amino acids based on the weight before RF-T of beef reached over 20% and 1.5-fold with 5.22 log CFU/g aerobic bacteria, which was lesser than the Korean regulation value of 6.7 log CFU/g (5 × 106  CFU/g). Therefore, RF-T could be proposed as a promising high-temperature tenderization method with lowered risk of microbial spoilage. PRACTICAL APPLICATION: We showed that lowering the chamber temperature during RF-T was effective in surface drying and inhibiting aerobic bacteria. RF-T for 24-48 h with 30 W/kg specific RF heating power had an aging-like effect given tenderization and increase in FAAs. Moreover, by providing the matching circuit and impedance during RF-T, this method could be industrially reproducible.


Assuntos
Microbiologia de Alimentos , Calefação , Animais , Bovinos , Contagem de Colônia Microbiana , Fatores de Tempo , Qualidade de Produtos para o Consumidor
2.
Int J Biol Macromol ; 253(Pt 5): 127154, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37793524

RESUMO

The rising demand for green and clean energy urges the enlargement of economical and proficient electrode materials for supercapacitors. Herein, we designed a novel electrode material by porous cellulose graphitic carbon (CC) derived from bio-waste cornhusk via the pyrolysis route, and α-Fe2O3 decorated nanostructure with CC (CCIO) was achieved in situ pyrolysis of corn-husk and Fe(NO3)3·9H2O metal salt followed by a coating of polypyrrole (CCIOP). The CC, CCIO, and CCIOP nanocomposite electrodes were characterized by XRD, Raman, FTIR, FE-SEM/EDX, FE-TEM, XPS, and BET analysis. The CCIOP nanocomposite electrode exhibits an enhanced specific capacitance (Csp) of 290.9 F/g, which is substantial to its pristine CC (128.3 F/g), PPy (140.3 F/g), and CCIO (190.7 F/g). The Csp of CCIOP in a three-electrode system, using 1 M Na2SO4 electrolyte exhibits excellent capacity retention of 79.1 % even at a high current density of 10 A/g. The as-fabricated asymmetric supercapacitor (ASC) delivered a remarkable capacity retention of 88.7 % with a coulombic efficiency of 98.8 % even after 3000 cycles. The study shows successful utilization of cellulose from bio-waste cornhusk into a substantial template applicable in future alternative energy storage devices.


Assuntos
Grafite , Nanocompostos , Polímeros , Celulose , Carbono , Pirróis , Eletrodos
3.
Ecotoxicol Environ Saf ; 253: 114694, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857924

RESUMO

Till to date, the application of sulfur-doped graphitic carbon nitride supported transition metal carbide interface for electrochemical sensor fabrication was less explored. In this work, we designed a simple synthesis of molybdenum carbide sphere embedded sulfur doped graphitic carbon nitride (Mo2C/SCN) catalyst for the nanomolar electrochemical sensor application. The synthesized Mo2C/SCN nanocatalyst was systematically characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with elemental mapping. The SEM images show that the porous SCN network adhered uniformly on Mo2C, causing a loss of crystallinity in the diffractogram. The corresponding elemental mapping of Mo2C/SCN shows distinct peaks for carbon (41.47%), nitrogen (32.54%), sulfur (1.37%), and molybdenum (24.62%) with no additional impurity peaks, reflecting the successful synthesis. Later, the glassy carbon electrode (GCE) was modified by Mo2C/SCN nanocatalyst for simultaneous sensing of uric acid (UA) and folic acid (FA). The fabricated Mo2C/SCN/GCE is capable of simultaneous and interference free electrochemical detection of UA and FA in a binary mixture. The limit of detection (LOD) calculated at Mo2C/SCN/GCE for UA and FA was 21.5 nM (0.09 - 47.0 µM) and 14.7 nM (0.09 - 167.25 µM) respectively by differential pulse voltammetric (DPV) technique. The presence of interferons has no significant effect on the sensor's performance, making it suitable for real sample analysis. The present method can be extended to fabricate an electrochemical sensor for various molecules.


Assuntos
Ácido Fólico , Ácido Úrico , Ácido Úrico/análise , Técnicas Eletroquímicas/métodos , Carbono/química , Eletrodos , Limite de Detecção , Enxofre
4.
ACS Appl Mater Interfaces ; 13(8): 10397-10408, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33591712

RESUMO

Existing soft actuators for adaptive microlenses suffer from high required input voltage, optical loss, liquid loss, and the need for assistant systems. In this study, we fabricate a polyvinyl chloride-based gel using a new synergistic plasticization method to achieve simultaneously a high optical transparency and an ultrasoft rubber-like elastic behavior with a large voltage-induced deformation under a weak electric field. By compressing the smooth gel between two sets of annular electrodes, a self-contained biconvex microlens is realized that is capable of considerable shape changes in the optical path. Each surface of the dual-curvature microlens can be independently adjusted to focus or scatter light to capture real or virtual images, yield variable focal lengths (+31.8 to -11.3 mm), and deform to various shapes to improve aberrations. In addition to simple fabrication, our microlens operates silently and consumes low power (0.52 mW), making it superior to existing microlenses.

5.
J Food Sci ; 86(3): 749-761, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33604898

RESUMO

The supercooling degree (SD), which refers to the difference between the ice nucleation temperature and freezing point of kimchi, varies depending on the type of kimchi, manufacturer, recipe, and manufacturing season. The aim of this study is to investigate the major influencing factors for the supercooled storage of kimchi and to analyze the possibility of supercooled storage for commercial kimchi. Pearson correlation analysis determined that, in commercial kimchi manufactured between March and July 2018, the SD of kimchi correlated to the number of aerobic bacteria (P < 0.01), however, was not associated with lactic acid bacteria. Moreover, the ice nucleation temperature of saline solution inoculated with aerobic bacteria was reduced from -3.03 ± 0.04 to -6.18 ± 0.11 °C by 10 kGy gamma ray sterilization. Meanwhile, the ice nucleation temperatures of 1.8 kg of commercial red cabbage kimchi and 500 g of white cabbage kimchi manufactured in February 2020 were -3.93 ± 0.06 °C and -3.57 ± 0.06 °C, respectively, and they could be stored at -2.5 °C for 12 weeks without freezing. Additionally, supercooled storage of kimchi at -2.5 °C caused a fermentation delay effect compared to control storage at 1 °C, considering the acidity and amount of lactic acid bacteria. Therefore, if the number of aerobic bacteria is controlled during the manufacturing process of kimchi, supercooled storage at temperatures below -2.5 °C may extend the shelf life of kimchi. PRACTICAL APPLICATION: We have shown that aerobic bacteria are the key influencing factor for ice nucleation of kimchi during supercooled storage. Aside from the initial sterilization process, fermentation of kimchi can also be delayed by lowering the storage temperature below -2.5 °C. Moreover, the method of direct cool refrigeration may have an industrial-level application.


Assuntos
Brassica , Temperatura Baixa , Fermentação , Alimentos Fermentados , Armazenamento de Alimentos/métodos , Bactérias Aeróbias , Brassica/microbiologia , Alimentos Fermentados/microbiologia , Microbiologia de Alimentos/métodos , Lactobacillales , Temperatura
6.
ACS Appl Mater Interfaces ; 12(39): 44147-44155, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32870646

RESUMO

Developing a simple and universal solution for gripping fragile, multiscaled, and arbitrary-shaped objects using a robot gripper is challenging. Herein, we propose a universal, shape-adaptive/-retaining and reversible, hardness-variable gripper skin that serves as a resourceful solution for grasping such objects without damaging them. The proposed universal gripper skin based on a magnetorheological elastomer is attached to a robot gripper. The proposed skin takes the shape of a target object as soon as the gripper grasps the object. At this time, we solidify the gripper skin by applying a magnetic field, thereby allowing the gripper to grasp the target object easily. After releasing the objects, the magnetic field is removed and the deformed proposed gripper skin rapidly restores its original shape. The proposed adaptive gripper skin is made to grasp various target objects, such as cylinders, cuboids, and triangular prisms, based on which its grasping performance is evaluated.


Assuntos
Elastômeros/química , Força da Mão , Robótica , Pele/química , Desenho de Equipamento , Humanos , Campos Magnéticos , Tamanho da Partícula , Propriedades de Superfície
7.
Sensors (Basel) ; 19(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404971

RESUMO

The most important thing in a thin and soft haptic module with an electroactive polymer actuator array is to increase its vibrotactile amplitude and to create a variety of vibrotactile sensations. In this paper, we introduce a thin film-type electroactive polymer actuator array capable of stimulating two types of human mechanoreceptors simultaneously, and we present a haptic rendering method that maximizes the actuators' vibrational force without improving the array's haptic performance. The increase in vibrational amplitude of the soft electroactive polymer actuator array is achieved by creating a beat vibration, which is an interference pattern of two vibrations with slightly different frequencies. The textures of a target object are translated into haptic stimuli using the proposed method. We conducted qualitative and quantitative experiments to evaluate the performance of the proposed rendering method. The results showed that this method not only amplifies the vibration's amplitude but also haptically simulates various objects' surfaces.

8.
Food Chem ; 267: 149-156, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29934149

RESUMO

We developed an on-packaging colorimetric sensor label that can detect the aldehyde emission of apples based on Methyl Red. The sensor label was constructed using printable inks on paper medium and relied on the change in basicity caused by the nucleophilic addition reaction between aldehyde and hydroxide via the Cannizzaro reaction. The sensor can be used to detect aldehyde in solution and vapor. Sensitivity and stability toward changes in humidity were achieved by altering the concentration of OH-. Under exposure to ripening apples, the label changed color from yellow to orange, and then to red. The degree of ripeness was estimated by a sensory test and texture analysis. The color change of sensor label had showed a similar tendency to the changes in the parameters of the sensory test, soluble solid content, and hardness. Therefore, the sensor label can be used for real time on-package ripeness monitoring of apples during their shelf life.


Assuntos
Aldeídos/análise , Colorimetria/métodos , Frutas/química , Compostos Azo , Cor , Análise de Alimentos , Umidade , Malus/química
9.
Opt Express ; 25(17): 20133-20141, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041697

RESUMO

We propose a focus-tunable double-convex (DCX) lens based on a non-ionic PVC (nPVC) gel to be used at close conjugates. The proposed lens is composed of an nPVC gel and two plates with electrodes. Each plate has a hole whose boundary and inner part are pasted with an electrode (anode) and has another ring shaped electrode (cathode) whose center point is the same as the hole's center. The gel is sandwiched between an upper plate and a lower plate, and it is bulged inward between the holes of two plates by applied pressure from the plates (double-convex lens shape). The lens's focal length changed from 3 mm to 24.5 mm with applied voltages from 0 V to 400 V. We also observed that the proposed lens's field-of-view decreased from 121.9 ° to 41.9 ° according to the applied voltages. The proposed lens brings additional benefit for users with higher transmittance (over 94%).

10.
Sci Rep ; 7(1): 2068, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522844

RESUMO

This paper presents a bio-inspired adaptive micro-lens with electrically tunable focus made of non-ionic high-molecular-weight polyvinyl chloride (PVC) gel. The optical device mimics the design of the crystalline lens and ciliary muscle of the human eye. It consists of a plano-convex PVC gel micro-lens on Indium Tin Oxide (ITO) glass, confined with an annular electrode operating as an artificial ciliary muscle. Upon electrical activation, the electroactive adhesive force of the PVC gel is exerted on the annular anode electrode, which reduces the sagittal height of the plano-convex PVC gel lens, resulting in focal length variation of the micro-lens. The focal length increases from 3.8 mm to 22.3 mm as the applied field is varied from 200 V/mm to 800 V/mm, comparable to that of the human lens. The device combines excellent optical characteristics with structural simplicity, fast response speed, silent operation, and low power consumption. The results show the PVC gel micro-lens is expected to open up new perspectives on practical tunable optics.

11.
J Sci Food Agric ; 95(14): 2799-810, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25892577

RESUMO

The purpose of this review is to provide an overview of current packaging systems, e.g. active packaging and intelligent packaging, for various foods. Active packaging, such as modified atmosphere packaging (MAP), extends the shelf life of fresh produce, provides a high-quality product, reduces economic losses, including those caused by delay of ripening, and improves appearance. However, in active packaging, several variables must be considered, such as temperature control and different gas formulations with different product types and microorganisms. Active packaging refers to the incorporation of additive agents into packaging materials with the purpose of maintaining or extending food product quality and shelf life. Intelligent packaging is emerging as a potential advantage in food processing and is an especially useful tool for tracking product information and monitoring product conditions. Moreover, intelligent packaging facilitates data access and information exchange by altering conditions inside or outside the packaging and product. In spite of these advantages, few of these packaging systems are commercialized because of high cost, strict safety and hygiene regulations or limited consumer acceptance. Therefore more research is needed to develop cheaper, more easily applicable and effective packaging systems for various foods.


Assuntos
Embalagem de Alimentos , Conservação de Alimentos , Qualidade dos Alimentos , Microbiologia de Alimentos , Conservantes de Alimentos , Humanos , Inteligência
12.
ACS Appl Mater Interfaces ; 6(22): 19574-8, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25386721

RESUMO

Here, we show that chemical vapor deposition growth of graphene on copper foil is strongly affected by the cooling conditions. Variation of cooling conditions such as cooling rate and hydrocarbon concentration in the cooling step has yielded graphene islands with different sizes, density of nuclei, and growth rates. The nucleation site density on Cu substrate is greatly reduced when the fast cooling condition was applied, while continuing methane flow during the cooling step also influences the nucleation and growth rate. Raman spectra indicate that the graphene synthesized under fast cooling condition and methane flow on cool-down exhibit superior quality of graphene. Further studies suggest that careful control of the cooling rate and CH4 gas flow on the cooling step yield a high quality of graphene.

13.
Biosens Bioelectron ; 37(1): 82-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22609556

RESUMO

A flexible glucose sensor using a CVD-grown graphene-based field-effect-transistor (FET) is demonstrated. The CVD-grown graphene was functionalized with linker molecules in order to immobilize the enzymes that induce the catalytic response of glucose. Polyethylene terephthalate (PET) was employed as the substrate material to realize a flexible sensor. The fabricated graphene-based FET sensor showed ambipolar transfer characteristics. Through measurements of the Dirac point shift and differential drain-source current, the fabricated FET sensor could detect glucose levels in the range of 3.3-10.9 mM, which mostly covers the reference range of medical examination or screen test for diabetes diagnostic. This CVD-grown graphene-based FET sensor, which provides excellent fitting to a model curve even when deformed, high resolution, and continuous real-time monitoring, holds great promise, especially for portable, wearable, and implantable glucose level monitoring applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Glucose/análise , Grafite/química , Peróxido de Hidrogênio/análise , Transistores Eletrônicos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Desenho de Equipamento , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA