Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 48(12): 3585-3596, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37561257

RESUMO

CCT2 is a eukaryotic chaperonin TCP-1 ring complex subunit that mediates protein folding, autophagosome incorporation, and protein aggregation. In this study, we investigated the effects of CCT on oxidative and ischemic damage using in vitro and in vivo experimental models. The Tat-CCT2 fusion protein was efficiently delivered into HT22 cells in a concentration- and time-dependent manner, and the delivered protein was gradually degraded in HT22 cells. Incubation with Tat-CCT2 significantly ameliorated the 200 µM hydrogen peroxide (H2O2)-induced reduction in cell viability in a concentration-dependent manner, and 8 µM Tat-CCT2 treatment significantly alleviated H2O2-induced DNA fragmentation and reactive oxygen species formation in HT22 cells. In gerbils, CCT2 protein was efficiently delivered into pyramidal cells in CA1 region by intraperitoneally injecting 0.5 mg/kg Tat-CCT2, as opposed to control CCT2. In addition, treatment with 0.2 or 0.5 mg/kg Tat-CCT2 mitigated ischemia-induced hyperlocomotive activity 1 d after ischemia and confirmed the neuroprotective effects by NeuN immunohistochemistry in the hippocampal CA1 region 4 d after ischemia. Tat-CCT2 treatment significantly reduced the ischemia-induced activation of astrocytes and microglia in the hippocampal CA1 region 4 d after ischemia. Furthermore, treatment with 0.2 or 0.5 mg/kg Tat-CCT2 facilitated ischemia-induced autophagic activity and ameliorated ischemia-induced autophagic initiation in the hippocampus 1 d after ischemia based on western blotting for LC3B and Beclin-1, respectively. Levels of p62, an autophagic substrate, significantly increased in the hippocampus following treatment with Tat-CCT2. These results suggested that Tat-CCT2 exerts neuroprotective effects against oxidative stress and ischemic damage by promoting the autophagic removal of damaged proteins or organelles.


Assuntos
Fármacos Neuroprotetores , Animais , Gerbillinae/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Hipocampo/metabolismo , Isquemia/metabolismo , Produtos do Gene tat , Neurônios/metabolismo
2.
Cells ; 10(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572372

RESUMO

The present study explored the effects of endophilin A1 (SH3GL2) against oxidative damage brought about by H2O2 in HT22 cells and ischemic damage induced upon transient forebrain ischemia in gerbils. Tat-SH3GL2 and its control protein (Control-SH3GL2) were synthesized to deliver it to the cells by penetrating the cell membrane and blood-brain barrier. Tat-SH3GL2, but not Control-SH3GL2, could be delivered into HT22 cells in a concentration- and time-dependent manner and the hippocampus 8 h after treatment in gerbils. Tat-SH3GL2 was stably present in HT22 cells and degraded with time, by 36 h post treatment. Pre-incubation with Tat-SH3GL2, but not Control-SH3GL2, significantly ameliorated H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation. SH3GL2 immunoreactivity was decreased in the gerbil hippocampal CA1 region with time after ischemia, but it was maintained in the other regions after ischemia. Tat-SH3GL2 treatment in gerbils appreciably improved ischemia-induced hyperactivity 1 day after ischemia and the percentage of NeuN-immunoreactive surviving cells increased 4 days after ischemia. In addition, Tat-SH3GL2 treatment in gerbils alleviated the increase in lipid peroxidation as assessed by the levels of malondialdehyde and 8-iso-prostaglandin F2α and in pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and interleukin-6; while the reduction of protein levels in markers for synaptic plasticity, such as postsynaptic density 95, synaptophysin, and synaptosome associated protein 25 after transient forebrain ischemia was also observed. These results suggest that Tat-SH3GL2 protects neurons from oxidative and ischemic damage by reducing lipid peroxidation and inflammation and improving synaptic plasticity after ischemia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Hipocampo/patologia , Peroxidação de Lipídeos , Plasticidade Neuronal , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Animais , Isquemia Encefálica/fisiopatologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Produtos do Gene tat/metabolismo , Gerbillinae , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Tempo
3.
Cells ; 8(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683736

RESUMO

In a previous study, we utilized a proteomic approach and found a significant reduction in phosphatidylethanolamine-binding protein 1 (PEBP1) protein level in the spinal cord at 3 h after ischemia. In the present study, we investigated the role of PEBP1 against oxidative stress in NSC34 cells in vitro, and ischemic damage in the rabbit spinal cord in vivo. We generated a PEP-1-PEBP1 fusion protein to facilitate the penetration of blood-brain barrier and intracellular delivery of PEBP1 protein. Treatment with PEP-1-PEBP1 significantly decreased cell death and the induction of oxidative stress in NSC34 cells. Furthermore, administering PEP-1-PEBP1 did not show any significant side effects immediately before and after ischemia/reperfusion. Administration of PEP-PEBP1 improved the Tarlov's neurological score at 24 and 72 h after ischemia, and significantly improved neuronal survival at 72 h after ischemia based on neuronal nuclei (NeuN) immunohistochemistry, Flouro-Jade B staining, and western blot study for cleaved caspase 3. PEP-1-PEBP1 administration decreased oxidative stress based on malondialdehyde level, advanced oxidation protein products, and 8-iso-prostaglandin F2α in the spinal cord. In addition, inflammation based on myeloperoxidase level, tumor necrosis factor-α level, and high mobility group box 1 level was decreased by PEP-1-PEBP1 treatment at 72 h after ischemia. Thus, PEP-1-PEBP1 treatment, which decreases oxidative stress, inflammatory cytokines, and neuronal death, may be an effective therapeutic strategy for spinal cord ischemia.


Assuntos
Neurônios/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Traumatismo por Reperfusão/patologia , Medula Espinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cisteamina/análogos & derivados , Cisteamina/metabolismo , Citocinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Proteína HMGB1/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Inflamação , Masculino , Malondialdeído/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/genética , Peptídeos/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Coelhos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
4.
Neurochem Int ; 118: 265-274, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29753754

RESUMO

In the present study, we made a PEP-1-phosphatidylethanolamine-binding protein 1 (PEP-1-PEBP1) fusion protein to facilitate the transduction of PEBP1 into cells and observed significant ameliorative effects of PEP-1-PEBP1 against H2O2-induced neuronal damage and the formation of reactive oxygen species in the HT22 hippocampal cells. In addition, administration of PEP-1-PEBP1 fusion protein ameliorated H2O2-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) and facilitated the phosphorylation of cyclic-AMP response element binding protein (CREB) in HT22 cells after exposure to H2O2. We also investigated the temporal and spatial changes of phosphorylated phosphatidylethanolamine-binding protein 1 (pPEBP1) in the hippocampus, after 5 min of transient forebrain ischemia in gerbils. In the sham-operated animals, pPEBP1 immunoreactivity was not detectable in the hippocampal CA1 region. pPEBP1 immunoreactivity was significantly increased in the hippocampal CA1 region, 1-2 days after ischemia, compared to that in the sham-operated group and pPEBP1 immunoreactivity was returned to levels in sham-operated group at 3-4 days after ischemia. pPEBP1 immunoreactivity significantly increased at day 7 after ischemia and decreased to sham-operated group levels by day 10 after ischemia/reperfusion. In addition, administration of PEP-1-PEBP1 fusion protein significantly reduced the ischemia-induced hyperactivity of locomotion, 1 day after ischemia and PEP-1-PEBP1 reduced neuronal damage and reactive gliosis (astrocytosis and microgliosis) in the gerbil hippocampal CA1 region, 4 days after ischemia. Administration of PEP-1-PEBP1 fusion protein ameliorated the ischemia-induced phosphorylation of ERK at 3 h and 6 h after ischemia/reperfusion and accelerated the phosphorylation of CREB in ischemic hippocampus at 6 h after ischemia. These results suggest that the increase in PEBP1 phosphorylation causes neuronal damage in the hippocampus and treatment with PEP-1-PEBP1 fusion protein provides neuroprotection from increasing phosphorylation of ERK-CREB pathways in the hippocampal CA1 region, during ischemic damage.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Região CA1 Hipocampal/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Animais , Isquemia Encefálica/patologia , Região CA1 Hipocampal/patologia , Linhagem Celular , Gerbillinae , Locomoção/fisiologia , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia
5.
Cell Death Dis ; 8(10): e3075, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28981094

RESUMO

In the present study, we searched for possible candidates that can prevent ischemic damage in the rabbit spinal cord. For this study, we used two-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, in sham- and ischemia-operated animals. As the level of protein disulfide-isomerase A3 (PDIA3) significantly decreased 3 h after ischemia/reperfusion, we further investigated its possible role against ischemic damage using an in vitro spinal cord cell line and in vivo spinal cord ischemic model. The administration of Tat-PDIA3 significantly reduced the hydrogen peroxide-induced formation of reactive oxygen species and cell death, based on terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling and a colorimetric WST-1 assay. Further, Tat-PDIA3 significantly ameliorated the ischemia-induced deficits in motor function, based on Tarlov's criteria, 24-72 h after ischemia/reperfusion, as well as the degeneration of motor neurons in the ventral horn 72 h after ischemia/reperfusion. Tat-PDIA3 administration also reduced the ischemia-induced activation of microglia and lipid peroxidation in the motor neurons 72 h after ischemia/reperfusion. PDIA3 also potentially ameliorated the ischemia-induced increase in oxidative markers in serum and decreased the activity of Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, and glutathione peroxidase in spinal cord homogenates, 24 h and 72 h after ischemia/reperfusion. These results suggest that Tat-PDIA3 could be used to protect spinal cord neurons from ischemic damage, due to its modulatory action on the oxidative/anti-oxidative balance. Tat-PDIA3 could be applicable to protects neurons from the ischemic damage induced by thoracoabdominal aorta obstruction.


Assuntos
Produtos do Gene tat/genética , Isomerases de Dissulfetos de Proteínas/genética , Traumatismo por Reperfusão/genética , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Modelos Animais de Doenças , Produtos do Gene tat/administração & dosagem , Glutationa Peroxidase/genética , Humanos , Peróxido de Hidrogênio/química , Peroxidação de Lipídeos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Neurônios Motores/química , Neurônios Motores/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/administração & dosagem , Coelhos , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/terapia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Superóxido Dismutase/genética
6.
Neurochem Res ; 41(12): 3300-3307, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27743287

RESUMO

In the present study, we investigated the ability of Cu, Zn-superoxide dismutase (SOD1) to improve the therapeutic potential of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) against ischemic damage in the spinal cord. Animals were divided into four groups: the control group, vehicle (PEP-1 peptide and artificial cerebrospinal fluid)-treated group, Ad-MSC alone group, and Ad-MSC-treated group with PEP-1-SOD1. The abdominal aorta of the rabbit was occluded for 30 min in the subrenal region to induce ischemic damage, and immediately after reperfusion, artificial cerebrospinal fluid or Ad-MSCs (2 × 105) were administered intrathecally. In addition, PEP-1 or 0.5 mg/kg PEP-1-SOD1 was administered intraperitoneally to the Ad-MSC-treated rabbits. Motor behaviors and NeuN-immunoreactive neurons were significantly decreased in the vehicle-treated group after ischemia/reperfusion. Administration of Ad-MSCs significantly ameliorated the changes in motor behavior and NeuN-immunoreactive neuronal survival. In addition, the combination of PEP-1-SOD1 and Ad-MSCs further increased the ameliorative effects of Ad-MSCs in the spinal cord after ischemia. Furthermore, the administration of Ad-MSCs with PEP-1-SOD1 decreased lipid peroxidation and maintained levels of antioxidants such as SOD1 and glutathione peroxidase compared to the Ad-MSC alone group. These results suggest that combination therapy using Ad-MSCs and PEP-1-SOD1 strongly protects neurons from ischemic damage by modulating the balance of lipid peroxidation and antioxidants.


Assuntos
Tecido Adiposo/citologia , Antioxidantes/metabolismo , Cisteamina/análogos & derivados , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Medula Espinal/irrigação sanguínea , Superóxido Dismutase-1/metabolismo , Animais , Cisteamina/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Isquemia/enzimologia , Isquemia/psicologia , Peroxidação de Lipídeos , Masculino , Células-Tronco Mesenquimais/metabolismo , Atividade Motora , Peptídeos/genética , Coelhos , Proteínas Recombinantes de Fusão/genética , Superóxido Dismutase-1/genética
7.
Neural Regen Res ; 11(6): 924-30, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27482220

RESUMO

In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin (ferritin-H), and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1-2 days and then increased once again within the CA1 region at 4-7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4-7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.

8.
Neurochem Res ; 40(5): 1063-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25894680

RESUMO

In the present study, we investigated the effects of pioglitazone (PGZ) in the hippocampal CA1 region of low- or high-fat diet (LFD or HFD) fed gerbils after transient forebrain ischemia. After 8 weeks of LFD or HFD feeding, PGZ (30 mg/kg) was intraperitoneally administered to the gerbils, following which ischemia was induced by occlusion of the bilateral common carotid arteries for 5 min. Administration of PGZ significantly reduced the ischemia-induced hyperactivity 1 day after ischemia/reperfusion in both LFD- and HFD-fed gerbils. At 4 days after ischemia/reperfusion, the neurons were significantly reduced and microglial activation was observed in the hippocampal CA1 region in LFD- and HFD-fed gerbils. The microglial activation was more prominent in the HFD-fed gerbils compared to the LFD-fed gerbils. Administration of PGZ ameliorated ischemia-induced neuronal death and microglial activation in the hippocampal CA1 region 4 days after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-gerbils. At 6 h after ischemia/reperfusion, tumor necrosis factor-α (TNF-α) and interlukin-1ß (IL-1ß) levels were significantly increased in the hippocampal homogenates of LFD-fed group compared to control group, and HFD feeding further increased TNF-α and IL-1ß levels. PGZ treatment significantly ameliorated the increase of TNF-α and IL-1ß levels in LFD-fed gerbils, not in the HFD-fed gerbils. At 12 h after ischemia/reperfusion, superoxide dismutase (SOD) and malondialdehyde (MDA) levels in hippocampal homogenates were significantly increased in the LFD-fed group compared to the control group, and HFD feeding significantly showed relatively reduction in SOD activity and increase in MDA level. PGZ administration significantly reduced the increase in MDA levels 12 h after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-fed gerbils. These results suggest that PGZ ameliorates the neuronal damage induced by ischemia by maintaining the TNF-α, IL-1ß, SOD and MDA levels in LFD-fed gerbils. In addition, HFD feeding affects the modulation of these parameters in the hippocampus after transient forebrain ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Dieta com Restrição de Gorduras , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Tiazolidinedionas/uso terapêutico , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Dieta com Restrição de Gorduras/tendências , Dieta Hiperlipídica/tendências , Gerbillinae , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Pioglitazona , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA