Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Imaging Sci Dent ; 54(1): 71-80, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38571783

RESUMO

Purpose: This study aimed to evaluate age-stratified radiographic features in temporomandibular joint osteoarthritis using cone-beam computed tomography. Materials and Methods: In total, 210 joints from 183 patients (144 females, 39 males, ranging from 12 to 88 years old with a mean age of 44.75±19.97 years) diagnosed with temporomandibular joint osteoarthritis were stratified by age. Mandibular condyle position and bony changes (flattening, erosion, osteophytes, subchondral sclerosis, and subchondral pseudocysts in both the condyle and articular eminence, thickening of the glenoid fossa, joint space narrowing, and joint loose bodies) were evaluated through cone-beam computed tomography. After adjusting for sex, the association between age groups and radiographic findings was analyzed using both a multiple regression model and a multinomial logistic regression model (α=0.05). Results: The prevalence of joint space narrowing and protruded condyle position in the glenoid fossa significantly increased with age (P<0.05). The risks of bony changes, including osteophytes and subchondral pseudocysts in the condyle; flattening, erosion, osteophyte, and subchondral sclerosis in the articular eminence; joint loose bodies; and thickening of the glenoid fossa, also significantly rose with increasing age (P<0.05). The number of radiographic findings increased with age; in particular, the increase was more pronounced in the temporal bone than in the mandibular condyle (P<0.05). Conclusion: Increasing age was associated with a higher frequency and greater diversity of bony changes in the temporal bone, as well as a protruded condyle position in the glenoid fossa, resulting in noticeable joint space narrowing in temporomandibular joint osteoarthritis.

2.
Maxillofac Plast Reconstr Surg ; 40(1): 19, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30206535

RESUMO

BACKGROUND: Calcium pyrophosphate dihydrate deposition disease (CPDD) is a rare disease in the temporomandibular joint (TMJ) space. It forms a calcified crystal mass and induces a limitation of joint movement. CASE PRESENTATION: The calcified mass in our case was occupied in the left TMJ area and extended to the infratemporal and middle cranial fossa. For a complete excision of this mass, we performed a vertical ramus osteotomy and resected the mass around the mandibular condyle. The calcified mass in the infratemporal fossa was carefully excised, and the segmented mandible was anatomically repositioned. Scanning electronic microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) microanalysis was performed to evaluate the calcified mass. The result of SEM/EDS showed that the crystal mass was completely composed of calcium pyrophosphate dihydrate. This result strongly suggested that the calcified mass was CPDD in the TMJ area. CONCLUSIONS: CPDD in the TMJ is a rare disease and is difficult to differentially diagnose from other neoplasms. A histological examination and quantitative microanalysis are required to confirm the diagnosis. In our patient, CPDD in the TMJ was successfully removed via the extracorporeal approach. SEM/EDS microanalysis was used for the differential diagnosis.

3.
Imaging Sci Dent ; 45(2): 103-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26125005

RESUMO

Bony fusion between the mandibular condyle and skull base involves temporomandibular joint (TMJ) bony ankylosis. This condition might originate from trauma, infection, or systemic disease. TMJ adhesion can develop after synovial damage. Both TMJ ankylosis and adhesion lead to functional impairment and pain. Here, we present a case of a 50-year-old female who had bony ankylosis of the right TMJ and adhesion of the left TMJ. She had otitis media in the right ear. A large mass in the right TMJ was observed on computed tomograph. Magnetic resonance image showed a large fused bone mass with normal bone marrow in the right TMJ and flattening of the condyle with a thin disk in the left TMJ. Gap arthroplasty with temporal fascia was performed on the right TMJ, and discectomy, high condylectomy, and coronoidectomy were performed on the left TMJ. During a 2-year follow-up after surgery, the patient had no recurrence.

4.
Imaging Sci Dent ; 43(4): 261-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24380065

RESUMO

PURPOSE: This study was performed to investigate the bone thickness of the infrazygomatic crest area by computed tomography (CT) for placement of a miniplate as skeletal anchorage for maxillary protraction in skeletal Class III children. MATERIALS AND METHODS: CT images of skeletal Class III children (7 boys, 9 girls, mean age: 11.4 years) were taken parallel to the Frankfurt horizontal plane. The bone thickness of the infrazygomatic crest area was measured at 35 locations on the right and left sides, perpendicular to the bone surface. RESULTS: The bone was thickest (5.0 mm) in the upper zygomatic bone and thinnest (1.1 mm) in the anterior wall of the maxillary sinus. Generally, there was a tendency for the bone to be thicker at the superior and lateral area of the zygomatic process of the maxilla. There was no clinically significant difference in bone thickness between the right and left sides; however, it was thicker in male than in female subjects. CONCLUSION: In the infrazygomatic crest area, the superior and lateral area of the zygomatic process of the maxilla had the most appropriate thickness for placement of a miniplate in growing skeletal Class III children with a retruded maxilla.

5.
Imaging Sci Dent ; 41(2): 63-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21977477

RESUMO

PURPOSE: The purpose of this study was to evaluate a new technique for localizing impacted mesiodens using its horizontal magnification ratio on panoramic radiographs. MATERIALS AND METHODS: Location-magnification equation of a panoramic equipment was obtained from horizontal magnification ratio of a metal ball which was located variable positions from the center of image layer at interval of 2 mm. Panoramic radiographs were obtained from a skull phantom with a metal ball which was a substitute for impacted mesiodens and was embedded 10mm(Group 1), 15mm(Group 2), and 20mm(Group 3) posterior to the central incisor. Each group obtained 7 panoramic radiographs at variable positions and one periapical radiograph. Three methods were used to estimate the actual width of the incisors and the balls which were used to calculate the magnification ratio. The methods included using the actual incisor width and the calculated ball width (Method 1), using the actual incisor width and the ball widths measured on periapical radiograph (Method 2), and using the incisor and the ball widths measured on periapical radiograph (Method 3). The location of the metal ball was calculated by using the location-magnification equation. RESULTS: The smallest difference between the calculated and the actual distance was 0.1±0.7 mm in Group 1/Method 3. The largest difference was -4.2±1.6 mm in Group 3/Method 2. In all groups, method 3 was the most accurate. CONCLUSION: Quantitative localization of impacted mesiodens is possible by using panoramic radiograph.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA