Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426141

RESUMO

Single-cell omics sequencing has rapidly advanced, enabling the quantification of diverse omics profiles at a single-cell resolution. To facilitate comprehensive biological insights, such as cellular differentiation trajectories, precise annotation of cell subtypes is essential. Conventional methods involve clustering cells and manually assigning subtypes based on canonical markers, a labor-intensive and expert-dependent process. Hence, an automated computational prediction framework is crucial. While several classification frameworks for predicting cell subtypes from single-cell RNA sequencing datasets exist, these methods solely rely on single-omics data, offering insights at a single molecular level. They often miss inter-omic correlations and a holistic understanding of cellular processes. To address this, the integration of multi-omics datasets from individual cells is essential for accurate subtype annotation. This article introduces moSCminer, a novel framework for classifying cell subtypes that harnesses the power of single-cell multi-omics sequencing datasets through an attention-based neural network operating at the omics level. By integrating three distinct omics datasets-gene expression, DNA methylation, and DNA accessibility-while accounting for their biological relationships, moSCminer excels at learning the relative significance of each omics feature. It then transforms this knowledge into a novel representation for cell subtype classification. Comparative evaluations against standard machine learning-based classifiers demonstrate moSCminer's superior performance, consistently achieving the highest average performance on real datasets. The efficacy of multi-omics integration is further corroborated through an in-depth analysis of the omics-level attention module, which identifies potential markers for cell subtype annotation. To enhance accessibility and scalability, moSCminer is accessible as a user-friendly web-based platform seamlessly connected to a cloud system, publicly accessible at http://203.252.206.118:5568. Notably, this study marks the pioneering integration of three single-cell multi-omics datasets for cell subtype identification.


Assuntos
Multiômica , Redes Neurais de Computação , Aprendizado de Máquina , Metilação de DNA/genética
2.
BMC Bioinformatics ; 24(1): 169, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101124

RESUMO

BACKGROUND: Breast cancer is a highly heterogeneous disease that comprises multiple biological components. Owing its diversity, patients have different prognostic outcomes; hence, early diagnosis and accurate subtype prediction are critical for treatment. Standardized breast cancer subtyping systems, mainly based on single-omics datasets, have been developed to ensure proper treatment in a systematic manner. Recently, multi-omics data integration has attracted attention to provide a comprehensive view of patients but poses a challenge due to the high dimensionality. In recent years, deep learning-based approaches have been proposed, but they still present several limitations. RESULTS: In this study, we describe moBRCA-net, an interpretable deep learning-based breast cancer subtype classification framework that uses multi-omics datasets. Three omics datasets comprising gene expression, DNA methylation and microRNA expression data were integrated while considering the biological relationships among them, and a self-attention module was applied to each omics dataset to capture the relative importance of each feature. The features were then transformed to new representations considering the respective learned importance, allowing moBRCA-net to predict the subtype. CONCLUSIONS: Experimental results confirmed that moBRCA-net has a significantly enhanced performance compared with other methods, and the effectiveness of multi-omics integration and omics-level attention were identified. moBRCA-net is publicly available at https://github.com/cbi-bioinfo/moBRCA-net .


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Multiômica , Algoritmos , Redes Neurais de Computação
3.
BMC Bioinformatics ; 24(1): 168, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101254

RESUMO

BACKGROUND: Identification of the cancer subtype plays a crucial role to provide an accurate diagnosis and proper treatment to improve the clinical outcomes of patients. Recent studies have shown that DNA methylation is one of the key factors for tumorigenesis and tumor growth, where the DNA methylation signatures have the potential to be utilized as cancer subtype-specific markers. However, due to the high dimensionality and the low number of DNA methylome cancer samples with the subtype information, still, to date, a cancer subtype classification method utilizing DNA methylome datasets has not been proposed. RESULTS: In this paper, we present meth-SemiCancer, a semi-supervised cancer subtype classification framework based on DNA methylation profiles. The proposed model was first pre-trained based on the methylation datasets with the cancer subtype labels. After that, meth-SemiCancer generated the pseudo-subtypes for the cancer datasets without subtype information based on the model's prediction. Finally, fine-tuning was performed utilizing both the labeled and unlabeled datasets. CONCLUSIONS: From the performance comparison with the standard machine learning-based classifiers, meth-SemiCancer achieved the highest average F1-score and Matthews correlation coefficient, outperforming other methods. Fine-tuning the model with the unlabeled patient samples by providing the proper pseudo-subtypes, encouraged meth-SemiCancer to generalize better than the supervised neural network-based subtype classification method. meth-SemiCancer is publicly available at https://github.com/cbi-bioinfo/meth-SemiCancer .


Assuntos
Metilação de DNA , Neoplasias , Humanos , Aprendizado de Máquina Supervisionado , Neoplasias/genética , Aprendizado de Máquina , Redes Neurais de Computação
4.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099704

RESUMO

MOTIVATION: The human microbiome, which is linked to various diseases by growing evidence, has a profound impact on human health. Since changes in the composition of the microbiome across time are associated with disease and clinical outcomes, microbiome analysis should be performed in a longitudinal study. However, due to limited sample sizes and differing numbers of timepoints for different subjects, a significant amount of data cannot be utilized, directly affecting the quality of analysis results. Deep generative models have been proposed to address this lack of data issue. Specifically, a generative adversarial network (GAN) has been successfully utilized for data augmentation to improve prediction tasks. Recent studies have also shown improved performance of GAN-based models for missing value imputation in a multivariate time series dataset compared with traditional imputation methods. RESULTS: This work proposes DeepMicroGen, a bidirectional recurrent neural network-based GAN model, trained on the temporal relationship between the observations, to impute the missing microbiome samples in longitudinal studies. DeepMicroGen outperforms standard baseline imputation methods, showing the lowest mean absolute error for both simulated and real datasets. Finally, the proposed model improved the predicted clinical outcome for allergies, by providing imputation for an incomplete longitudinal dataset used to train the classifier. AVAILABILITY AND IMPLEMENTATION: DeepMicroGen is publicly available at https://github.com/joungmin-choi/DeepMicroGen.


Assuntos
Microbiota , Humanos , Estudos Longitudinais , Redes Neurais de Computação , Tamanho da Amostra , Fatores de Tempo
5.
Epigenetics Chromatin ; 16(1): 5, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739438

RESUMO

BACKGROUND: With the advance of bisulfite sequencing technologies, massive amount of methylation data have been generated, which provide unprecedented opportunities to study the epigenetic mechanism and its relationship to other biological processes. A commonly seen feature of the methylation data is the correlation between nearby CpG sites. Although such a spatial correlation was utilized in several epigenetic studies, its interaction to other characteristics of the methylation data has not been fully investigated. RESULTS: We filled this research gap from an information theoretic perspective, by exploring the impact of the spatial correlation on the methylation entropy (ME). With the spatial correlation taken into account, we derived the analytical relation between the ME and another key parameter, the methylation probability. By comparing it to the empirical relation between the two corresponding statistics, the observed ME and the mean methylation level, genomic loci under strong epigenetic control can be identified, which may serve as potential markers for cell-type specific methylation. The proposed method was validated by simulation studies, and applied to analyze a published dataset of mouse brain methylome. CONCLUSIONS: Compared to other sophisticated methods developed in literature, the proposed method provides a simple but effective way to detect CpG segments under strong epigenetic control (e.g., with bipolar methylation pattern). Findings from this study shed light on the identification of cell-type specific genes/pathways based on methylation data from a mixed cell population.


Assuntos
Metilação de DNA , Epigenoma , Animais , Camundongos , Entropia , Epigênese Genética , Ilhas de CpG , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA