Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(5): 112512, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37200190

RESUMO

Germinal centers (GCs), sites of antibody affinity maturation, are organized into dark (DZ) and light (LZ) zones. Here, we show a B cell-intrinsic role for signal transducer and activator of transcription 3 (STAT3) in GC DZ and LZ organization. Altered zonal organization of STAT3-deficient GCs dampens development of long-lived plasma cells (LL-PCs) but increases memory B cells (MBCs). In an abundant antigenic environment, achieved here by prime-boost immunization, STAT3 is not required for GC initiation, maintenance, or proliferation but is important for sustaining GC zonal organization by regulating GC B cell recycling. Th cell-derived signals drive STAT3 tyrosine 705 and serine 727 phosphorylation in LZ B cells, regulating their recycling into the DZ. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses identified STAT3 regulated genes that are critical for LZ cell recycling and transiting through DZ proliferation and differentiation phases. Thus, STAT3 signaling in B cells controls GC zone organization and recycling, and GC egress of PCs, but negatively regulates MBC output.


Assuntos
Linfócitos B , Fator de Transcrição STAT3 , Centro Germinativo , Plasmócitos , Transdução de Sinais
2.
J Immunol ; 206(12): 2803-2818, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34039637

RESUMO

MicroRNAs (miRNAs) are involved in healthy B cell responses and the loss of tolerance in systemic lupus erythematosus (SLE), although the role of many miRNAs remains poorly understood. Dampening miR-21 activity was previously shown to reduce splenomegaly and blood urea nitrogen levels in SLE-prone mice, but the detailed cellular responses and mechanism of action remains unexplored. In this study, using the TLR7 agonist, imiquimod-induced SLE model, we observed that loss of miR-21 in Sle1b mice prevented the formation of plasma cells and autoantibody-producing Ab-forming cells (AFCs) without a significant effect on the magnitude of the germinal center (GC) response. We further observed reduced dendritic cell and monocyte numbers in the spleens of miR-21-deficient Sle1b mice that were associated with reduced IFN, proinflammatory cytokines, and effector CD4+ T cell responses. RNA sequencing analysis on B cells from miR-21-deficient Sle1b mice revealed reduced activation and response to IFN, and cytokine and target array analysis revealed modulation of numerous miR-21 target genes in response to TLR7 activation and type I IFN stimulation. Our findings in the B6.Sle1bYaa (Sle1b Yaa) spontaneous model recapitulated the miR-21 role in TLR7-induced responses with an additional role in autoimmune GC and T follicular helper responses. Finally, immunization with T-dependent Ag revealed a role for miR-21 in foreign Ag-driven GC and Ab, but not AFC, responses. Our data suggest a potential multifaceted, context-dependent role for miR-21 in autoimmune and foreign Ag-driven AFC and GC responses. Further study is warranted to delineate the cell-intrinsic requirements and mechanisms of miR-21 during infection and SLE development.


Assuntos
Antígenos/imunologia , Autoimunidade/imunologia , Glicoproteínas de Membrana/imunologia , MicroRNAs/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Formação de Anticorpos/imunologia , Feminino , Masculino , Camundongos , Camundongos Knockout
3.
Immunohorizons ; 5(1): 2-15, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446493

RESUMO

Genome-wide association studies identified variants in the transcription factor STAT4 gene and several other genes in the STAT4 signaling pathway, such as IL12A, IL12B, JAK2, and TYK2, which are associated with an increased risk of developing systemic lupus erythematosus (SLE) and other autoimmune diseases. Consistent with the genome-wide association studies data, STAT4 was shown to play an important role in autoimmune responses and autoimmunity development in SLE mouse models. Despite such important role for STAT4 in SLE development in mice and humans, little is known whether and how STAT4 may regulate extrafollicular Ab-forming cell (AFC) and follicular germinal center (GC) responses, two major pathways of autoreactive B cell development and autoantibody production. To our surprise, we found STAT4 to be largely dispensable for promoting autoimmune AFC and GC responses in various autoimmune- and SLE-prone mouse models, which strongly correlated with autoantibody production, and immune complex deposition and immune cell infiltration in the kidney. We further observed that STAT4 deficiency had no effects on AFC, GC, and Ag-specific Ab responses during protein Ag immunization or influenza virus infection. Additionally, CD4+ effector and follicular Th cell responses in autoimmune- and SLE-prone mice and protein Ag-immunized and influenza virus-infected mice were intact in the absence of STAT4. Together, our data demonstrate a largely dispensable role for STAT4 in AFC, GC, and Ab responses in SLE mouse models and in certain foreign Ag-driven responses.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Fator de Transcrição STAT4/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoanticorpos/sangue , Autoantígenos/imunologia , Autoimunidade , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT4/genética
4.
Front Immunol ; 11: 1632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849556

RESUMO

IL-10 producing B cells (B10 cells) play an important immunoregulatory role in various autoimmune and infection conditions. However, the factors that regulate their development and maintenance are incompletely understood. Recently, we and others have established a requirement for TLR7 in promoting autoimmune antibody forming cell (AFC) and germinal center (GC) responses. Here we report an important additional role of TLR7 in the negative regulation of B10 cell development. TLR7 overexpression or overstimulation promoted the reduction of B10 cells whereas TLR7 deficiency rescued these cells in both non-autoimmune and autoimmune-prone mice. TLR7 expression was further inversely correlated with B cell-dependent IL-10 production and its inhibition of CD4 T cell proliferation and IFNγ production in an in vitro B cell and T cell co-culture system. Further, B10 cells displayed elevated TLR7, IFNγR, and STAT1 expression compared to non-B10 cells. Interestingly, deficiency of IFNγR in TLR7 overexpressing lupus-prone mice rescued B10 cells from TLR7-mediated reduction. Finally, B cell intrinsic deletion of IFNγR was sufficient to restore B10 cells in the spleens of TLR7-promoted autoimmune mouse model. In conclusion, our findings demonstrate a novel role for the IFNγR-STAT1 pathway in TLR7-mediated negative regulation of B10 cell development.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Interferon gama/metabolismo , Interleucina-10/biossíntese , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Subpopulações de Linfócitos B/imunologia , Biomarcadores , Modelos Animais de Doenças , Imunomodulação/genética , Imunofenotipagem , Interferon gama/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
5.
J Immunol ; 204(10): 2641-2650, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32253245

RESUMO

Although STAT1 tyrosine-701 phosphorylation (designated STAT1-pY701) is indispensable for STAT1 function, the requirement for STAT1 serine-727 phosphorylation (designated STAT1-pS727) during systemic autoimmune and antipathogen responses remains unclear. Using autoimmune-prone B6.Sle1b mice expressing a STAT1-S727A mutant in which serine is replaced by alanine, we report in this study that STAT1-pS727 promotes autoimmune Ab-forming cell (AFC) and germinal center (GC) responses, driving autoantibody production and systemic lupus erythematosus (SLE) development. In contrast, STAT1-pS727 is not required for GC, T follicular helper cell (Tfh), and Ab responses to various foreign Ags, including pathogens. STAT1-pS727 is also not required for gut microbiota and dietary Ag-driven GC and Tfh responses in B6.Sle1b mice. By generating B cell-specific bone marrow chimeras, we demonstrate that STAT1-pS727 plays an important B cell-intrinsic role in promoting autoimmune AFC, GC, and Tfh responses, leading to SLE-associated autoantibody production. Our analysis of the TLR7-accelerated B6.Sle1b.Yaa SLE disease model expressing a STAT1-S727A mutant reveals STAT1-pS727-mediated regulation of autoimmune AFC and GC responses and lupus nephritis development. Together, we identify previously unrecognized differential regulation of systemic autoimmune and antipathogen responses by STAT1-pS727. Our data implicate STAT1-pS727 as a therapeutic target for SLE without overtly affecting STAT1-mediated protection against pathogenic infections.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Fator de Transcrição STAT1/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoanticorpos/sangue , Autoantígenos/imunologia , Autoimunidade , Linfócitos B/transplante , Humanos , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fosforilação , Domínios Proteicos/genética , Fator de Transcrição STAT1/genética , Serina/genética , Ativação Transcricional , Quimeras de Transplante
6.
J Immunol ; 204(4): 796-809, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900342

RESUMO

TLR7 is associated with development of systemic lupus erythematosus (SLE), but the underlying mechanisms are incompletely understood. Although TLRs are known to activate type I IFN (T1IFN) signaling, the role of T1IFN and IFN-γ signaling in differential regulation of TLR7-mediated Ab-forming cell (AFC) and germinal center (GC) responses, and SLE development has never been directly investigated. Using TLR7-induced and TLR7 overexpression models of SLE, we report in this study a previously unrecognized indispensable role of TLR7-induced IFN-γ signaling in promoting AFC and GC responses, leading to autoreactive B cell and SLE development. T1IFN signaling in contrast, only modestly contributed to autoimmune responses and the disease process in these mice. TLR7 ligand imiquimod treated IFN-γ reporter mice show that CD4+ effector T cells including follicular helper T (Tfh) cells are the major producers of TLR7-induced IFN-γ. Transcriptomic analysis of splenic tissues from imiquimod-treated autoimmune-prone B6.Sle1b mice sufficient and deficient for IFN-γR indicates that TLR7-induced IFN-γ activates multiple signaling pathways to regulate TLR7-promoted SLE. Conditional deletion of Ifngr1 gene in peripheral B cells further demonstrates that TLR7-driven autoimmune AFC, GC and Tfh responses and SLE development are dependent on IFN-γ signaling in B cells. Finally, we show crucial B cell-intrinsic roles of STAT1 and T-bet in TLR7-driven GC, Tfh and plasma cell differentiation. Altogether, we uncover a nonredundant role for IFN-γ and its downstream signaling molecules STAT1 and T-bet in B cells in promoting TLR7-driven AFC, GC, and SLE development whereas T1IFN signaling moderately contributes to these processes.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Interferon gama/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Animais , Centro Germinativo/imunologia , Interferon Tipo I , Glicoproteínas de Membrana/imunologia , Camundongos , Receptor 7 Toll-Like/imunologia
7.
Immunohorizons ; 3(10): 463-477, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594791

RESUMO

Germinal centers (GCs) are essential for the production of somatically hypermutated, class-switched Abs that are protective against infection, but they also form in the absence of purposeful immunization or infection, and are termed spontaneous GCs (Spt-GCs). Although Spt-GCs can arise in nonautoimmune-prone mice, aberrant regulation of Spt-GCs in autoimmune-prone mice is strongly associated with the development of autoimmune diseases like systemic lupus erythematosus. The formation of Spt-GCs is crucially driven by TLR7-mediated RNA sensing. However, the impact of MAVS-dependent, Rig-like receptor-mediated RNA sensing on the Spt-GC response remains unknown. In this study, we assessed the Spt-GC response and splenic B cell development in two MAVS-deficient mice with distinct genetic backgrounds. Importantly, we found that MAVS differentially controls Spt-GC responses and B cell development, depending on genetic background. B6/129 mixed background MAVSKO mice had nearly absent Spt-GC responses in the spleen and cervical lymph nodes, which were associated with impaired splenic B cell development, in addition to impaired B cell activation and TLR7 expression. Interestingly, treatment of mice with TLR7 agonist could partially rescue GC responses by overcoming follicular B cell activation deficits. Contrastingly, the absence of MAVS on a B6 background resulted in normal B cell development and Spt-GC formation. Our results highlight important differences in the contribution of MAVS to B cell development and Spt-GC function, depending on the genetic background, warranting greater regard for the impact of genetic background in further studies using these mice for the study of autoimmunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Patrimônio Genético , Imiquimode/farmacologia , Glicoproteínas de Membrana/imunologia , Camundongos Knockout , Especificidade da Espécie , Baço/citologia , Receptor 7 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA