RESUMO
Motile cilia are crucial for maintaining healthy bodily functions by facilitating fluid transport and removing foreign substances or debris from the body. The dysfunction of motile cilia leads to ciliopathy. In particular, damage to the motile cilia of the airways can cause or worsen respiratory disease, making it an attractive target for therapeutic interventions. However, there are no treatments to induce motile ciliogenesis. Forkhead box transcription factor J1 (FOXJ1), the master regulator, has been implicated in motile cilia formation. Mice lacking the Foxj1 gene show loss of axoneme, a key component of cilia, that further highlights the importance of FOXJ1 in motile cilia formation. This prompted us to identify new small molecules that could induce motile ciliogenesis. A phenotype-based high-throughput screening (HTS) in a Tg(foxj1a:eGFP) zebrafish model was performed and a novel hit compound was identified. Among the synthesized compounds, compound 16c effectively enhanced motile ciliogenesis in a transgenic zebrafish model. To further test the efficacy of compound 16c on a mammalian airway system consisting of multiciliated cells (MCCs), ex vivo mice tracheal epithelial cell culture was adopted under an air-liquid interface system (ALI). Compound 16c significantly increased the number of MCCs by enhancing motile ciliogenesis. In addition, compound 16c exhibited good liver microsomal stability, in vivo PK profiles with AUC, and oral bioavailability. There was no significant inhibition of CYP and hERG, and no cell cytotoxicity was shown. In an elastase-induced COPD (chronic obstructive pulmonary disease) mouse model, compound 16c effectively prevented the development and onset of COPD. Taken together, compound 16c has great promise as a therapeutic agent for treating and alleviating motile ciliopathies.
Assuntos
Cílios , Descoberta de Drogas , Piridinas , Peixe-Zebra , Animais , Cílios/efeitos dos fármacos , Cílios/metabolismo , Camundongos , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Animais Geneticamente Modificados , Fatores de Transcrição Forkhead/metabolismo , Relação Dose-Resposta a DrogaRESUMO
The deposition of monosodium urate (MSU) crystals induces the overexpression of reactive oxygen species (ROS) and proinflammatory cytokines in residential macrophages, further promoting the infiltration of inflammatory leukocytes in the joints of gouty arthritis. Herein, a peroxidase-mimicking nanoscavenger was developed by forming manganese dioxide over albumin nanoparticles loaded with an anti-inflammatory drug, indomethacin (BIM), to block the secretion of ROS and COX2-induced proinflammatory cytokines in the MSU-induced gouty arthritis model. In the MSU-induced arthritis mouse model, the BIM nanoparticles alleviated joint swelling, which is attributed to the abrogation of ROS and inflammatory cytokine secretions from proinflammatory macrophages that induces neutrophil infiltration and fluid building up in the inflammation site. Further, the BIM nanoparticle treatment reduced the influx of macrophages and neutrophils in the injured region by blocking migration and inducing reverse migration in the zebrafish larva tail amputation model as well as in MSU-induced peritonitis and air pouch mouse models. Overall, the current strategy of employing biomineralized nanoscavengers for arthritis demonstrates clinical significance in dual blocking of peroxides and COX2 to prevent influx of inflammatory cells into the sites of inflammation.
Assuntos
Artrite Gotosa , Animais , Camundongos , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Neutrófilos , Espécies Reativas de Oxigênio/efeitos adversos , Peixe-Zebra , Ciclo-Oxigenase 2 , Ácido Úrico , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Citocinas , Macrófagos , Modelos Animais de DoençasRESUMO
The hypothalamus is part of the diencephalon and has several nuclei, one of which is the arcuate nucleus. The arcuate nucleus of hypothalamus (ARH) consists of neuroendocrine neurons and centrally-projecting neurons. The ARH is the center where the homeostasis of nutrition/metabolism and reproduction are maintained. As such, dysfunction of the ARH can lead to disorders of nutrition/metabolism and reproduction. Here, we review various types of neurons in the ARH and several genetic disorders caused by mutations in the ARH.
RESUMO
BACKGROUND AND PURPOSE: Achieving favorable postoperative outcomes in patients with drug-resistant epilepsy (DRE) requires early referrals for preoperative examinations. The purpose of this study was to investigate the possibility of a user-friendly early DRE prediction model that is easy for nonexperts to utilize. METHODS: A two-step genotype analysis was performed, by applying 1) whole-exome sequencing (WES) to the initial test set (n=243) and 2) target sequencing to the validation set (n=311). Based on a multicenter case-control study design using the WES data set, 11 genetic and 2 clinical predictors were selected to develop the DRE risk prediction model. The early prediction scores for DRE (EPS-DRE) was calculated for each group of the selected genetic predictors (EPS-DREgen), clinical predictors (EPS-DREcln), and two types of predictor mix (EPS-DREmix) in both the initial test set and the validation set. RESULTS: The multidimensional EPS-DREmix of the predictor mix group provided a better match to the outcome data than did the unidimensional EPS-DREgen or EPS-DREcln. Unlike previous studies, the EPS-DREmix model was developed using only 11 genetic and 2 clinical predictors, but it exhibited good discrimination ability in distinguishing DRE from drug-responsive epilepsy. These results were verified using an unrelated validation set. CONCLUSIONS: Our results suggest that EPS-DREmix has good performance in early DRE prediction and is a user-friendly tool that is easy to apply in real clinical trials, especially by nonexperts who do not have detailed knowledge or equipment for assessing DRE. Further studies are needed to improve the performance of the EPS-DREmix model.
RESUMO
Multiple hereditary exostoses (MHE) is a rare autosomal dominant skeletal disorder with a variety of clinical manifestations. We aimed to evaluate the general clinical phenotypic severity of MHE using our own scoring system and analyzed the risk factors associated with severe clinical phenotypes. In this study, 43 patients from 30 families were analyzed. The mutations were identified by direct sequencing of polymerase chain reaction-amplified genomic DNA or by multiplex ligation-dependent probe amplification. According to a new scoring system devised by the authors, the severity of the phenotype was assessed as mild, moderate, or severe based on the deformity of each segment, number of exostoses, leg length discrepancy, and functional limitations. Of 43 patients from 30 families, 39 patients (90.7%) and 24 families (80%) presented with EXT1 or EXT2 mutations. Patients with EXT1 mutations had a significantly worse phenotype than that of patients with EXT2 mutations or without any detectable mutation. The mean clinical score of patients with an EXT1 mutation (5.76; range, 2.0-8.0; SD = 1.60) was higher than that of patients with an EXT2 mutation (4.06; range, 2.0-7.0; SD = 1.47) or of those without any detectable mutation (4.63; range, 3.0-6.0; SD = 1.44; p = 0.005). According to our classification system, more patients with EXT1 mutations had 'severe disease' than those with EXT2 mutations. Deformity scores were also higher in patients with EXT1 mutations (p = 0.018). In the multivariate analysis, the deformity score was found to be associated with the 'severe' class (p = 0.031). In conclusion, 90.7% of patients with MHE showed EXT mutations. Our scoring system showed reliable results. We suggest that the extent of deformity is an important factor in determining the phenotype of MHE and close monitoring for the development of severe disease is recommended in patients with high deformity scores.
RESUMO
Genotyping usually entails analysis of the products of polymerase chain reaction (PCR) carried out with genomic DNA (gDNA) as template, and is employed for validation of mutant or transgenic organisms. For genotyping of adult zebrafish, gDNA is often extracted from clipped caudal fin or skin mucus through either alkaline lysis using NaOH or proteinase K (PK) treatment. Further purification of the gDNA using ethanol precipitation was optional. To develop a rapid and noninvasive method that extracts PCR-ready gDNA from adult zebrafish, we combined skin swabbing with PK treatment and demonstrated its efficiency. This method could be applied to a wide range of fish.
Assuntos
DNA , Peixe-Zebra , Animais , DNA/análise , Genômica , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Peixe-Zebra/genéticaRESUMO
Alexander disease (AxD) is a neurodegenerative astrogliopathy caused by mutation in the glial fibrillary acidic protein (GFAP) gene. A 42-year-old Korean man presented with temporary gait disturbance and psychiatric regression after a minor head trauma in the absence of bulbar symptoms and signs. Magnetic resonance images of the brain and spinal cord showed significant atrophy of the medulla oblongata and the entire spinal cord as well as contrast-enhanced T2 hypointensity in the basal ganglia. DNA sequencing revealed a novel 33-bp in-frame deletion mutation (p.Glu138_Leu148del) within the 1B rod domain of GFAP, which was predicted to be deleterious by PROVEAN analysis. To test whether the deletion mutant is disease-causing, we performed in vitro GFAP assembly and sedimentation assays, and GFAP aggregation assays in human adrenal carcinoma SW13 (Vim-) cells and rat primary astrocytes. All the assays revealed that GFAP p.Glu138_Leu148del is aggregation prone. Based on these findings, we diagnosed the patient with Type II AxD. This is a report that demonstrates the pathogenicity of InDel mutation of GFAP through functional studies. This patient's atypical presentation as well as the discrepancy between clinical symptoms and radiologic findings may extend the scope of AxD.
Assuntos
Doença de Alexander , Doença de Alexander/diagnóstico , Doença de Alexander/genética , Doença de Alexander/patologia , Animais , Encéfalo/metabolismo , Proteína Glial Fibrilar Ácida/genética , Humanos , Mutação , Fenótipo , RatosRESUMO
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
RESUMO
BACKGROUND: IK is a splicing factor that promotes spliceosome activation and contributes to pre-mRNA splicing. Although the molecular mechanism of IK has been previously reported in vitro, the physiological role of IK has not been fully understood in any animal model. Here, we generate an ik knock-out (KO) zebrafish using the CRISPR/Cas9 system to investigate the physiological roles of IK in vivo. RESULTS: The ik KO embryos display severe pleiotropic phenotypes, implying an essential role of IK in embryonic development in vertebrates. RNA-seq analysis reveals downregulation of genes involved in skeletal muscle differentiation in ik KO embryos, and there exist genes having improper pre-mRNA splicing among downregulated genes. The ik KO embryos display impaired neuromuscular junction (NMJ) and fast-twitch muscle development. Depletion of ik reduces myod1 expression and upregulates pax7a, preventing normal fast muscle development in a non-cell-autonomous manner. Moreover, when differentiation is induced in IK-depleted C2C12 myoblasts, myoblasts show a reduced ability to form myotubes. However, inhibition of IK does not influence either muscle cell proliferation or apoptosis in zebrafish and C2C12 cells. CONCLUSION: This study provides that the splicing factor IK contributes to normal skeletal muscle development in vivo and myogenic differentiation in vitro.
Assuntos
Citocinas/genética , Músculo Esquelético/embriologia , Fatores de Processamento de RNA/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Citocinas/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Fatores de Processamento de RNA/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismoRESUMO
Anti-melanoma differentiation-associated gene 5 (anti-MDA5) antibody is a myositis-specific marker detected in clinically amyopathic dermatomyositis (DM). DM with anti-MDA5 antibody can be accompanied by rapidly progressive interstitial lung disease (RP-ILD) and other autoimmune disorders. Until now, only one case of neuromyelitis optica (NMO) with anti-MDA5-positive DM has been reported worldwide, in which the patient achieved a favorable outcome with intensive immunotherapy. We report a case of NMO in a patient with anti-MDA5-positive DM complicated by ILD and rheumatoid arthritis. Our patient experienced a fulminant course of NMO, rather than RP-ILD, in the presence of hyperferritinemia, which resulted in profound neurological sequelae despite immunotherapy including rituximab.
RESUMO
Ependymal cells (ECs) are multiciliated neuroepithelial cells that line the ventricles of the brain and the central canal of the spinal cord (SC). How ependymal motile cilia are maintained remains largely unexplored. Here we show that zebrafish embryos deficient in Wnt signaling have defective motile cilia, yet harbor intact basal bodies. With respect to maintenance of ependymal motile cilia, plcδ3a is a target gene of Wnt signaling. Lack of Connexin43 (Cx43), especially its channel function, decreases motile cilia and intercellular Ca2+ wave (ICW) propagation. Genetic ablation of cx43 in zebrafish and mice diminished motile cilia. Finally, Cx43 is also expressed in ECs of the human SC. Taken together, our findings indicate that gap junction mediated ICWs play an important role in the maintenance of ependymal motile cilia, and suggest that the enhancement of functional gap junctions by pharmacological or genetic manipulations may be adopted to ameliorate motile ciliopathy.
Assuntos
Cílios/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Epêndima/metabolismo , Medula Espinal/metabolismo , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Cílios/genética , Conexina 43/genética , Epêndima/patologia , Junções Comunicantes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Recurrent spontaneous vasospasm of the extracranial internal carotid artery (RSV-eICA) is a rarely recognized cause of ischemic stroke in young adults. However, its pathophysiology remains largely unknown. Through whole-exome sequencing of the ACOX3 gene of two dizygotic Korean twin brothers affected by RSV-eICA, we identified two compound heterozygous missense variants c.235 T > G (p.F79 V) and c.665G > A (p.G222E). In silico analysis indicated that both variants were classified as pathogenic. In vitro ACOX3 enzyme assay indicated practically no enzyme activity in both F79 V and G222E mutants. To determine the effect of the mutants on vasospasm, we used a collagen contraction assay on human aortic smooth muscle cells (HASMC). Carbachol, a cholinergic agonist, induces contraction of HASMC. Knockdown of ACOX3 in HASMC, using siRNA, significantly repressed HASMC contraction triggered by carbachol. The carbachol-induced HASMC contraction was restored by transfection with plasmids encoding siRNA-resistant wild-type ACOX3, but not by transfection with ACOX3 G222E or by co-transfection with ACOX3 F79 V and ACOX3 G222E, indicating that the two ACOX3 mutants suppress carbachol-induced HASMC contraction. We propose that an ACOX3 dysfunction elicits a prolonged loss of the basal aortic myogenic tone. As a result, smooth muscles of the ICA's intermediate segment, in which the sympathetic innervation is especially rich, becomes hypersensitive to sympathomimetic stimuli (e.g., heavy exercise) leading to a recurrent vasospasm. Therefore, ACOX3 dysfunction would be a causal mechanism of RSV-eICA. For the first time, we report the possible involvement of ACOX3 in maintaining the basal myogenic tone of human arterial smooth muscle.
Assuntos
Acil-CoA Oxidase/metabolismo , Artéria Carótida Interna/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Vasoconstrição/imunologia , Acil-CoA Oxidase/genética , Humanos , Masculino , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Doenças Vasculares/etiologiaRESUMO
Nondystrophic myotonias are disorders of Na+ (Nav1.4 or SCN4A) and Cl- (CLCN1) channels in skeletal muscles, and frequently show phenotype heterogeneity. The molecular mechanism underlying their pathophysiology and phenotype heterogeneity remains unclear. As zebrafish models have been recently exploited for studies of the pathophysiology and phenotype heterogeneity of various human genetic diseases, a zebrafish model may be useful for delineating nondystrophic myotonias. Here, we generated transgenic zebrafish expressing a human mutant allele of SCN4A, referred to as Tg(mylpfa:N440K), and needle electromyography revealed increased number of myotonic discharges and positive sharp waves in the muscles of Tg(mylpfa:N440K) than in controls. In addition, forced exercise test at a water temperature of 24⯰C showed a decrease in the distance moved, time spent in and number of visits to the zone with stronger swimming resistance. Finally, a forced exercise test at a water temperature of 18⯰C exhibited a higher number of dive-bombing periods and drifting-down behavior than in controls. These findings indicate that Tg(mylpfa:N440K) is a good vertebrate model of exercise- and cold-induced human nondystrophic myotonias. This zebrafish model may contribute to provide insight into the pathophysiology of myotonia in sodium channelopathy and could be used to explore a new therapeutic avenue.
Assuntos
Temperatura Baixa , Modelos Animais de Doenças , Músculo Esquelético/fisiopatologia , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Esforço Físico , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Eletromiografia , Mutação de Sentido Incorreto , Miotonia/genética , Miotonia/fisiopatologia , Miotonia Congênita/fisiopatologia , Transtornos Miotônicos/genética , Transtornos Miotônicos/fisiopatologia , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hiperpotassêmica/fisiopatologiaRESUMO
BACKGROUND: Knowledge of the genetic etiology of epilepsy can provide essential prognostic information and influence decisions regarding treatment and management, leading us into the era of precision medicine. However, the genetic basis underlying epileptogenesis or epilepsy pharmacoresistance is not well-understood, particularly in non-familial epilepsies with heterogeneous phenotypes that last until or start in adulthood. METHODS: We sought to determine the contribution of known epilepsy-associated genes (EAGs) to the causation of non-familial epilepsies with heterogeneous phenotypes and to the genetic basis underlying epilepsy pharmacoresistance. We performed a multi-center study for whole exome sequencing-based screening of 178 selected EAGs in 243 non-familial adult patients with primarily focal epilepsy (122 drug-resistant and 121 drug-responsive epilepsies). The pathogenicity of each variant was assessed through a customized stringent filtering process and classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: Possible causal genetic variants of epilepsy were uncovered in 13.2% of non-familial patients with primarily focal epilepsy. The diagnostic yield according to the seizure onset age was 25% (2/8) in the neonatal and infantile period, 11.1% (14/126) in childhood and 14.7% (16/109) in adulthood. The higher diagnostic yields were from ion channel-related genes and mTOR pathway-related genes, which does not significantly differ from the results of previous studies on familial or early-onset epilepsies. These potentially pathogenic variants, which were identified in genes that have been mainly associated with early-onset epilepsies with severe phenotypes, were also linked to epilepsies that start in or last until adulthood in this study. This finding suggested the presence of one or more disease-modifying factors that regulate the onset time or severity of epileptogenesis. The target hypothesis of epilepsy pharmacoresistance was not verified in our study. Instead, neurodevelopment-associated epilepsy genes, such as TSC2 or RELN, or structural brain lesions were more strongly associated with epilepsy pharmacoresistance. CONCLUSIONS: We revealed a fraction of possible causal genetic variants of non-familial epilepsies in which genetic testing is usually overlooked. In this study, we highlight the importance of earlier identification of the genetic etiology of non-familial epilepsies, which leads us to the best treatment options in terms of precision medicine and to future neurobiological research for novel drug development. This should be considered a justification for physicians determining the hidden genetics of non-familial epilepsies that last until or start in adulthood.
RESUMO
A new series of 1,3-diketone, heterocyclic and α,ß-unsaturated derivatives were synthesized and evaluated for their AhR antagonist activity using zebrafish and mammalian cells. Compounds 1b, 2c, 3b and 5b showed significant AhR antagonist activity in a transgenic zebrafish model. Among them, compound 3b, and 5b were found to have excellent AhR antagonist activity with IC50 of 3.36â¯nM and 8.3â¯nM in a luciferase reporter gene assay. In stem cell proliferation assay, compound 5b elicited marked HSC expansion.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Chalconas/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Proteínas de Peixe-Zebra/antagonistas & inibidores , Animais , Células COS , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chlorocebus aethiops , Humanos , Células-Tronco/efeitos dos fármacos , Peixe-ZebraRESUMO
Tailoring combinatorial therapies along with real-time monitoring strategies has been the major focus of overcoming multidrug resistance in cancer. However, attempting to develop a multifunctional nanoplatform in a single construct leads to compromising therapeutic outcomes. Herein, we developed a simple, theranostic nanoassembly containing a hyaluronic acid-stabilized redox-sensitive (HART) polyethylenimine polyplex composed of a doxorubicin (DOX) intercalated Bcl-2 shRNA encoded plasmid along with a green-synthesized hausmannite (Mn3O4) and hematite (Fe3O4) nanoparticle (GMF). The highly stable HART nanoassembly has enhanced CD44-mediated intracellular uptake along with hyaluronidase (hylase) and redox-responsive drug-gene release. With Bcl-2 gene silencing induced by the successful delivery of HART in multidrug-resistant MCF7 breast cancer cells, the synergistic cytotoxic effect of Bcl-2 silencing and DOX was achieved. In addition, the HART nanoassembly containing GMF exhibited excellent dual MRI contrast (T1/T2) by reducing artifact signals. Overall, the HART nanoassembly with its enhanced theranostic properties has the potential to improve the therapeutic efficacy in future preclinical and clinical trials.
Assuntos
Neoplasias da Mama/terapia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Terapia Genética/métodos , Ácido Hialurônico/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Doxorrubicina/uso terapêutico , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Feminino , Compostos Férricos/química , Inativação Gênica , Humanos , Células MCF-7 , Compostos de Manganês/química , Proteínas Oncogênicas/genética , Oxirredução , Óxidos/química , Polietilenoimina/química , Transfecção , Proteínas Virais/genéticaRESUMO
A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.
RESUMO
Although additive manufacturing technologies, also known as 3D printing, were first introduced in the 1980s, they have recently gained remarkable popularity owing to decreased costs. 3D printing has already emerged as a viable technology in many industries; in particular, it is a good replacement for microfabrication technology. Microfabrication technology usually requires expensive clean room equipment and skilled engineers; however, 3D printing can reduce both cost and time dramatically. Although 3D printing technology has started to emerge into microfabrication manufacturing and medical applications, it is typically limited to creating mechanical structures such as hip prosthesis or dental implants. There have been increased interests in wearable devices and the critical part of such wearable devices is the sensing part to detect biosignals noninvasively. In this paper, we have built a 3D-printed sensor that can measure electroencephalogram and electrocardiogram from zebrafish. Despite measuring biosignals noninvasively from zebrafish has been known to be difficult due to that it is an underwater creature, we were able to successfully obtain electrophysiological information using the 3D-printed sensor. This 3D printing technique can accelerate the development of simple noninvasive sensors using affordable equipment and provide an economical solution to physiologists who are unfamiliar with complicated microfabrication techniques.