Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338896

RESUMO

A food additive, silicon dioxide (SiO2) is commonly used in the food industry as an anti-caking agent. The presence of nanoparticles (NPs) in commercial food-grade SiO2 has raised concerns regarding their potential toxicity related to nano size. While recent studies have demonstrated the oral absorption and tissue distribution of food-additive SiO2 particles, limited information is available about their excretion behaviors and potential impact on macrophage activation. In this study, the excretion kinetics of two differently manufactured (fumed and precipitated) SiO2 particles were evaluated following repeated oral administration to rats for 28 d. The excretion fate of their intact particles, decomposed forms, or ionic forms was investigated in feces and urine, respectively. Monocyte uptake, Kupffer cell activation, and cytokine release were assessed after the oral administration of SiO2 particles. Additionally, their intracellular fates were determined in Raw 264.7 cells. The results revealed that the majority of SiO2 particles were not absorbed but directly excreted via feces in intact particle forms. Only a small portion of SiO2 was eliminated via urine, predominantly in the form of bioconverted silicic acid and slightly decomposed ionic forms. SiO2 particles were mainly present in particle forms inside cells, followed by ionic and silicic acid forms, indicating their slow conversion into silicic acid after cellular uptake. No effects of the manufacturing method were observed on excretion and fates. Moreover, no in vivo monocyte uptake, Kupffer cell polarization, or cytokine release were induced by orally administered SiO2 particles. These finding contribute to understanding the oral toxicokinetics of food-additive SiO2 and provide valuable insights into its potential toxicity.


Assuntos
Nanopartículas , Dióxido de Silício , Ratos , Animais , Dióxido de Silício/farmacocinética , Ácido Silícico , Aditivos Alimentares , Ativação de Macrófagos , Nanopartículas/toxicidade , Tamanho da Partícula , Citocinas
2.
J Hazard Mater ; 465: 133235, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141311

RESUMO

Zinc oxide (ZnO) is a zinc supplement widely used in health products and is approved by the FDA as Generally Regarded as Safe (GRAS). However, concerns have arisen regarding the potential health effects of nanoscale ZnO, as its reactivity differs from that of its bulk form. This has led to the need for an efficient method to extract ZnO from food products without altering its physicochemical properties, where conventional methods have proven to be inadequate. This study introduces an innovative approach using starch magnetic particles (SMPs) functionalized with a 12-amino acid peptide modified with five lysines (ZBP), that has specific affinity to ZnO. ZBP@SMPs effectively and rapidly extract intact ZnO from food products, achieving recovery efficiencies ranging from 60% to 90%, all while maintaining its morphology and crystallinity. The diameter of ZnO particles recovered from six commercial food products ranged from 25 to 500 nm, with 33% falling below 100 nm, highlighting the need for a size-dependent toxicity study. However, cytotoxicity assessment on human intestinal Caco-2 cells shows all ZnO samples affects cell proliferation and membrane integrity in a dose-dependent manner due to partial dissolution. This study contributes to understanding the safety of ZnO-containing food products and highlights potential health implications associated with their consumption.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Células CACO-2 , Ligantes , Nanopartículas/química , Fenômenos Magnéticos , Nanopartículas Metálicas/química
3.
Nanomaterials (Basel) ; 13(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37764602

RESUMO

Zinc oxide (ZnO) nanoparticles (NPs) are utilized as a zinc (Zn) fortifier in processed foods where diverse food additives can be present. Among them, additive solvents may strongly interact with ZnO NPs by changing the dispersion stability in food matrices, which may affect physico-chemical and dissolution properties as well as the cytotoxicity of ZnO NPs. In this study, ZnO NP interactions with representative additive solvents (methanol, glycerin, and propylene glycol) were investigated by measuring the hydrodynamic diameters, solubility, and crystallinity of ZnO NPs. The effects of these interactions on cytotoxicity, cellular uptake, and intestinal transport were also evaluated in human intestinal cells and using in vitro human intestinal transport models. The results revealed that the hydrodynamic diameters of ZnO NPs in glycerin or propylene glycol, but not in methanol, were significantly reduced, which is probably related to their high dispersion and increased solubility under these conditions. These interactions also caused high cell proliferation inhibition, membrane damage, reactive oxygen (ROS) generation, cellular uptake, and intestinal transport. However, the crystal structure of ZnO NPs was not affected by the presence of additive solvents. These findings suggest that the interactions between ZnO NPs and additive solvents could increase the dispersion and solubility of ZnO NPs, consequently leading to small hydrodynamic diameters and different biological responses.

4.
Front Neurol ; 14: 1184998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456633

RESUMO

Background: Disorders of consciousness (DOC) resulting from acquired brain injury (ABI) increase the mortality rate of patients, complicate rehabilitation, and increase the physical and economic burden that DOC imposes on patients and their families. Thus, treatment to promote early awakening from DOC is vital. Transcranial direct current stimulation (tDCS) has shown great potential for promoting neuro-electrochemical activity. However, previous tDCS studies did not consider structural damage or head and brain lesions, so the applicability of the results to all DOC patients was limited. In this study, to establish a patient-specific tDCS treatment plan considering the brain lesions of and damage sustained by DOC patients, we considered the electric field calculated by a the "finite electric" three-dimensional brain model based on magnetic resonance images. This protocol was developed to aid tDCS treatment of actual patients, and to verify its safety and effectiveness. Methods/design: Twenty-four patients with DOC after ABI will be enrolled in this cross-over trial. All participants will receive typical rehabilitation combined with sham tDCS and typical rehabilitation plus personalized tDCS (P-tDCS). Each interventional period will last 2 weeks (30 min/day, 5 days/week). The primary outcome [score on the Korean version of the Coma Recovery Scale-Revised (K-CRS-R)] will be assessed at baseline and the end of the first day of the intervention. Secondary outcomes (K-CRS-R at 1 week and 2 weeks after experimental session and quantitative EEG changes quantitative electroencephalography changes) will be measured at baseline and the end of week 4. Adverse events will be recorded during each treatment session. Discussion: For patients with neurological disorders, tDCS has served as a painless, non-invasive, easily applied, and effective therapy for several decades, and there is some evidence that it can improve the level of consciousness of patients with DOC. However, variability in the effects on consciousness among subjects have been reported and personalized strategies are lacking. This protocol is for a randomized controlled trial designed to validate the effectiveness and safety of P-tDCS combined with typical rehabilitation for DOC. Clinical trial registration: https://cris.nih.go.kr, identifier KCT0007157.

5.
Front Biosci (Landmark Ed) ; 28(2): 36, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36866560

RESUMO

BACKGROUND: Silicon dioxide (SiO2) and titanium dioxide (TiO2) are ones of the most widely used food additives as an anti-caking and a coloring agent, respectively, in the food industry. Understanding particle, aggregate, or ionic fates of two additives in commercial products is of importance to predict their potential toxicity. METHODS: Triton X-114 (TX-114)-based cloud point extraction (CPE) methods for two additives were optimized in food matrices. Their particle or ionic fates in various commercial foods were determined by the CPE, and the physico-chemical properties of separated particles were further characterized. RESULTS: SiO2 and TiO2 were primarily present as particle forms without changes in constituent particle size, size distribution, and crystalline phase. The maximum solubilities of SiO2 and TiO2 were 5.5% and 0.9%, respectively, depending on food matrix type, supporting their major particle fates in complex food matrices. CONCLUSIONS: These findings will provide basic information about the fates and safety aspects of SiO2 and TiO2 additives in commercial processed foods.


Assuntos
Aditivos Alimentares , Dióxido de Silício , Alimentos , Alimento Processado
6.
J Mater Chem B ; 11(3): 565-575, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36354057

RESUMO

To date, cancer therapies largely consist of five pillars: surgery, radiation, chemotherapy, targeted therapy, and immunotherapy. Still, researchers are trying to innovate the current cancer therapies to pursue an ideal one without side effects. For developing such a therapy, we designed a chemically well-defined route to a PEG- and docetaxel (DTX)-conjugated inorganic polymer, polyphosphazene, named "polytaxel (PTX)" with a prolonged blood circulation time and tumor localization. Here, we conducted the proof-of-concept study of the ideal therapy in orthotopic and xenograft pancreatic cancer models. We found that the average tumor inhibition rates of PTX were similar to those of DTX without any DTX toxicity-related side effects, such as neutropenia and weight loss. In conclusion, PTX met the requirements of an ideal anticancer drug with high anticancer efficacy and 100% survival rate. PTX is expected to replace any existing anticancer therapies in clinical practice.


Assuntos
Neutropenia , Neoplasias Pancreáticas , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Nível de Efeito Adverso não Observado , Taxoides/efeitos adversos , Polímeros/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neutropenia/induzido quimicamente , Neutropenia/tratamento farmacológico
7.
Nanomaterials (Basel) ; 12(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36234465

RESUMO

Zinc oxide (ZnO) nanoparticles (NPs) are used as a food additive Zn supplement due to the role of Zn in biological functions. They are directly added to complex processed foods or Zn-fortified functional foods. Hence, the interactions between ZnO NPs and nutritional or functional components can occur. In this study, the effects of ZnO NP interactions with two polyphenols (quercetin and rutin) on cytotoxicity, antioxidant activity, ex vivo intestinal absorption, and solubility were evaluated. Moreover, the characterization on the interactions was carried out by analyzing crystallinity, surface chemical bonding, chemical composition, and surface chemistry. The results demonstrate that the interactions caused higher cytotoxicity, ex vivo intestinal transport, and solubility of ZnO NPs than pristine ZnO NPs but did not affect antioxidant activity nor intestinal absorption of the polyphenols. The interaction effects were more evident by ZnO NPs interacted with quercetin than with rutin. The crystallinity of ZnO NPs was not influenced, but the degree of exposure of the chemical bondings, elemental compositions, and chemical group intensities on the surface of ZnO NPs, quercetin, or rutin were quenched or decreased to some extent by the interactions, especially by ZnO NPs interacted with quercetin. It is, therefore, concluded that the interactions affect chemical characteristics and surface chemical sates of ZnO NPs, quercetin, or rutin, which can cause high cytotoxicity, intestinal absorption, and solubility of ZnO NPs. Further study is required to elucidate the mechanism of action of the interactions.

8.
Mol Ther Oncolytics ; 27: 26-47, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36247810

RESUMO

Systemic delivery of oncolytic viruses has been widely regarded as an impractical option for antitumor treatment. Here, we selected two target genes as leading components, and significant therapeutic effects were obtained by simultaneously reducing the expression of transforming growth factor ß 1 (TGF-ß1) and heat shock protein 27 (HSP27) in various cancer cell types. Downregulation of HSP27 reduced the cellular levels of tumor progression-related proteins, and the simultaneous downregulation of HSP27 and TGF-ß1 increased tumor cell death beyond that observed with TGF-ß1 downregulation alone. To increase the potential for systemic administration, we generated modified mesenchymal stem cells (MSCs) to act as oncolytic adenovirus factories and carriers and assessed bioavailability in tumors after MSC injection. The MSCs were modified to express 78-kDa glucose-regulated protein (GRP78) and adenovirus early-region 1B 55 kDa (E1B55K). The tightly controlled inducible system permitted selective timing of viral release from carrier MSCs within the tumor. This approach significantly improved viral production, tumor targeting, timely viral release at the tumor site, and antitumor efficacy of the oncolytic adenovirus. These combined results demonstrate that engineered MSCs can significantly enhance the antitumor effects of oncolytic viruses without adverse safety issues, which may greatly extend the clinical applicability of oncolytic adenoviruses.

9.
Brain Sci ; 12(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35884644

RESUMO

Central post-stroke pain (CPSP) is an intractable neuropathic pain that can occur following central nervous system injuries. Spino-thalamo-cortical pathway damage contributes to CPSP development. However, brain regions involved in CPSP are unknown and previous studies were limited to supratentorial strokes with cortical lesion involvement. We analyzed the brain metabolism changes associated with CPSP following pontine hemorrhage. Thirty-two patients with isolated pontine hemorrhage were examined; 14 had CPSP, while 18 did not. Brain glucose metabolism was evaluated using 18F-fluorodeoxyglucose-positron emission tomography images. Additionally, regions revealing metabolic correlation with CPSP severity were analyzed. Patients with CPSP showed changes in the brain metabolism in the cerebral cortices and cerebellum. Compared with the control group, the CPSP group showed significant hypometabolism in the contralesional rostral anterior cingulum and ipsilesional primary motor cortex (Puncorrected < 0.001). However, increased brain metabolism was observed in the ipsilesional cerebellum (VI) and contralesional cerebellum (lobule VIIB) (Puncorrected < 0.001). Moreover, increased pain intensity correlated with decreased metabolism in the ipsilesional supplementary motor area and contralesional angular gyrus. This study emphasizes the role of the many different areas of the cortex that are involved in affective and cognitive processing in the development of CPSP.

10.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682753

RESUMO

Food additive zinc oxide (ZnO) nanoparticles (NPs) are widely used as a Zn supplement in the food and agriculture industries. However, ZnO NPs are directly added to complex food-matrices and orally taken through the gastrointestinal (GI) tract where diverse matrices are present. Hence, the dissolution properties, interactions with bio- or food-matrices, and the ionic/particle fates of ZnO NPs in foods and under physiological conditions can be critical factors to understand and predict the biological responses and oral toxicity of ZnO NPs. In this review, the solubility of ZnO NPs associated with their fate in foods and the GI fluids, the qualitative and quantitative determination on the interactions between ZnO NPs and bio- or food-matrices, the approaches for the fate determination of ZnO NPs, and the interaction effects on the cytotoxicity and oral toxicity of ZnO NPs are discussed. This information will be useful for a wide range of ZnO applications in the food industry at safe levels.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Aditivos Alimentares/toxicidade , Nanopartículas/toxicidade , Solubilidade , Óxido de Zinco/toxicidade
11.
Bioengineering (Basel) ; 9(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35447737

RESUMO

Mesenchymal stem cells (MSCs) are one of the most extensively studied stem cell types owing to their capacity for differentiation into multiple lineages as well as their ability to secrete regenerative factors and modulate immune functions. However, issues remain regarding their further application for cell therapy. Here, to demonstrate the superiority of the improvement of MSCs, we divided umbilical cord blood-derived MSCs (UCB-MSCs) from 15 donors into two groups based on efficacy and revealed donor-dependent variations in the anti-inflammatory effect of MSCs on macrophages as well as their immunoregulatory effect on T cells. Through surface marker analyses (242 antibodies), we found that HLA-A2 was positively related to the anti-inflammatory and immunoregulatory function of MSCs. Additionally, HLA-A2 mRNA silencing in MSCs attenuated their therapeutic effects in vitro; namely, the suppression of LPS-stimulated macrophages and phytohemagglutinin-stimulated T cells. Moreover, HLA-A2 silencing in MSCs significantly decreased their therapeutic effects in a rat model of hyperoxic lung damage. The present study provides novel insights into the quality control of donor-derived MSCs for the treatment of inflammatory conditions and diseases.

12.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35409381

RESUMO

(1) Background: Synthetic amorphous silica (SAS) is widely used as a food additive and contains nano-sized particles. SAS can be produced by fumed and precipitated methods, which may possess different physiochemical properties, toxicokinetics, and oral toxicity. (2) Methods: The toxicokinetics of fumed SAS and precipitated SAS were evaluated following a single-dose oral administration in rats. The tissue distribution and fate of both SAS particles were assessed after repeated oral administration in rats for 28 d, followed by recovery period for 90 d. Their 28-d repeated oral toxicity was also evaluated. (3) Results: Precipitated SAS showed higher oral absorption than fumed SAS, but the oral absorption of both SAS particles was low (<4%), even at 2000 mg/kg. Our tissue-distribution study revealed that both SAS particles, at a high dose (2000 mg/kg), were accumulated in the liver after repeated administration for 28 d, but the increased concentrations returned to normal levels at 29 d, the first day of the recovery period. A higher distribution level of precipitated SAS than fumed SAS and decomposed particle fates of both SAS particles were found in the liver at 28 d. No significant toxicological findings were observed after 28-d oral administration, suggesting their low oral toxicity. (4) Conclusions: Different manufacturing methods of SAS can, therefore, affect its oral toxicokinetics and tissue distribution, but not oral toxicity.


Assuntos
Aditivos Alimentares , Dióxido de Silício , Animais , Aditivos Alimentares/química , Tamanho da Partícula , Ratos , Dióxido de Silício/química , Distribuição Tecidual , Toxicocinética
13.
J Hazard Mater ; 432: 128666, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35305416

RESUMO

TiO2 (E171) is widely used in processed food as a coloring agent. However, growing concerns about the potential health effects of TiO2 nanoparticles (< 100 nm) have necessitated the need for monitoring the size distribution and cytotoxic properties of food additive TiO2 present in commercial food. In this study, we employed magnetic separation method to extract food additive TiO2 from 100 commercial foods. The extracted TiO2 had a mean particle diameter of 121-143 nm along with the fraction in nanoscale (< 100 nm) ranging from 7.5% to 35.7%, where certain types of food, such as candy and jelly, were shown to contain smaller TiO2 with higher fraction of nanoscale particles. Assuming that the low pH of the products with high content of organic acid is responsible for the smaller TiO2, the effect of three organic acids, such as acetic acid, ascorbic acid, and citric acid, on the physicochemical property of TiO2 was investigated. The citric acid was shown to reduce the size of TiO2 along with the generation of fragmented nanoparticles with a size of around 20 nm, whereas the effect of acetic acid and ascorbic acid was negligible. Although TiO2 treated with citric acid did not exhibit short-term cytotoxicity, this study suggests the importance of fully assessing the potential long-term health effect of food additive TiO2 whose physicochemical properties were altered in processed food.


Assuntos
Nanopartículas , Titânio , Ácido Cítrico , Aditivos Alimentares/química , Nanopartículas/química , Nanopartículas/toxicidade , Compostos Orgânicos , Tamanho da Partícula , Titânio/química , Titânio/toxicidade
14.
Clin Neuropharmacol ; 45(2): 17-20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35195549

RESUMO

OBJECTIVE: In this study, we aimed for the first time to evaluate the effectiveness of atomoxetine (Strattera) in the treatment of cognitive impairment and aphasia after stroke in a large sample. METHODS: We reviewed the data of 106 patients with poststroke aphasia and cognitive impairment (atomoxetine treatment group = 55 patients vs control group = 51 patients), including scores of the Korean version of the Mini-Mental State Examination (K-MMSE) and the Korean version of the Western Aphasia Battery. Wilcoxon signed-rank tests were used to compare the initial and follow-up K-MMSE and Korean version of the Western Aphasia Battery scores. Mann-Whitney U tests were used to compare the degree of improvement in K-MMSE and Aphasia Quotient (AQ) scores between the atomoxetine and control groups. RESULTS: Baseline characteristics including age, years of education, and scores of the initial Functional Independence Measure, Korean version of the Modified Barthel Index, Hamilton Depression Rating Scale, K-MMSE, and AQ did not differ significantly between the 2 groups. Follow-up K-MMSE and AQ scores were significantly better than the initial scores in both the treatment and control groups. However, improvements in K-MMSE scores were significantly greater in the treatment group than in the control group. In addition, the atomoxetine group had significantly higher AQ scores than the control group, especially for auditory verbal comprehension and naming. CONCLUSIONS: Atomoxetine has been shown to significantly improve cognitive function and language in patients with poststroke aphasia. It is also the first study to report improvement in auditory comprehension and naming by administration of atomoxetine.


Assuntos
Afasia , Disfunção Cognitiva , Acidente Vascular Cerebral , Afasia/tratamento farmacológico , Afasia/etiologia , Afasia/reabilitação , Cloridrato de Atomoxetina/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Humanos , Testes de Estado Mental e Demência , Acidente Vascular Cerebral/complicações
15.
Brain Neurorehabil ; 15(1): e9, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36743842

RESUMO

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is an inflammatory central nervous system disease that is driven by antibodies of the immunoglobulin G1 class. MOGAD has recently been recognized as an autoimmune disease; therefore, little is known about its rehabilitation. Here, we present a case of MOGAD that showed significant recovery after rehabilitation. A 58-year-old woman developed weakness in all extremities, dysarthria, and dysphagia. She visited the neurology department, and early brain and spine magnetic resonance imaging showed multifocal high intensity in the subcortical and periventricular white matter and the cervical cord. The patient's serum tested positive for anti-MOG antibodies. She was diagnosed with MOGAD and received intravenous steroid pulse therapy. After pharmacologic therapy, the patient was transferred to the rehabilitation department. Initially, her Functional Independence Measure (FIM) motor score was 26, allowing her to stand independently for only a few seconds. After 5 weeks of rehabilitation involving physical therapy, occupational therapy, and balance training, her FIM motor score improved to 60. However, 4 months after discharge, the disease relapsed with symptoms of motor weakness in all extremities, and steroid treatment was initiated. On the second admission, her FIM motor score was 42, but after continuous multidisciplinary rehabilitation, it improved to 76. Computerized cognitive therapy improved her cognitive function, from a Korean version of the Mini-Mental State Examination score of 23 on the first admission to 30 on final discharge. Since MOGAD is a relapsing disease, a favorable outcome can be achieved with continuous monitoring and multidisciplinary, symptom-specific rehabilitation.

16.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616682

RESUMO

In this study, eight different painted stainless steel 304L specimens were laser-cleaned using different process parameters, such as laser power, scan speed, and the number of repetitions. Laser-induced breakdown spectroscopy (LIBS) was adopted as the monitoring tool for laser cleaning. Identification of LIBS spectra with similar chemical compositions is challenging. A convolutional neural network (CNN)-based deep learning method was developed for accurate and rapid analysis of LIBS spectra. By applying the LIBS-coupled CNN method, the classification CNN model accuracy of laser-cleaned specimens was 94.55%. Moreover, the LIBS spectrum analysis time was 0.09 s. The results verified the possibility of using the LIBS-coupled CNN method as an in-line tool for the laser cleaning process.

17.
Opt Express ; 29(21): 32939-32950, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809115

RESUMO

Polygon mirror scanners are attracting considerable interest owing to their rapid speed and large scanning area. Here, we focused on the back-reflection effect of the polygon scanner. A new polygon scanner system was designed based on a geometric analysis. The final equations for the design express the position of the laser beam source having the largest scanning length without the reflected beam traveling back to the fiber. The proposed system performed a raster scan on an area. Additionally, a paint stripping experiment was conducted to demonstrate the potential use of our scanner in commercial laser cleaning applications.

18.
Nanomaterials (Basel) ; 11(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34835685

RESUMO

Zinc oxide (ZnO) nanoparticles (NPs) are used as zinc supplements due to the nutritional value of Zn. The toxicity of ZnO NPs in the food industry is required to be elucidated because they have large surface area and high reactivity compared with bulk-sized materials and have potentials to interact with food matrices, which may lead to different biological responses. In this study, interactions between ZnO NPs and food proteins (albumin, casein, and zein) were evaluated by measuring changes in physicochemical property, fluorescence quenching ratios, and structural protein stability compared with ZnO interaction with glucose, the most interacted saccharide in our previous report. The interaction effects on cytotoxicity, cellular uptake, intestinal transport, toxicokinetics, and acute oral toxicity were also investigated. The results demonstrate that interaction between ZnO and albumin reduced hydrodynamic diameters, but increased cytotoxicity, cellular uptake, and intestinal transport in a similar manner to ZnO interaction with glucose, without affecting primary structural protein stability and toxicokinetic behaviors. Hematological, serum biochemical, and histopathological analysis reveal no toxicological findings after orally administered ZnO NPs interacted with albumin or glucose in rats for 14 consecutive days, suggesting their low oral toxicity. In conclusion, the interactions between ZnO NPs and food proteins modulate in vitro biological responses, but do not affect in vivo acute oral toxicity. Further study is required to ascertain the interaction effects on chronic oral toxicity.

19.
Foods ; 10(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34574130

RESUMO

A wide variety of foods manufactured by nanotechnology are commercially available on the market and labeled as nanoproducts. However, it is challenging to determine the presence of nanoparticles (NPs) in complex food matrices and processed foods. In this study, top-down-approach-produced (TD)-NP products and nanobubble waters (NBWs) were chosen as representative powdered and liquid nanoproducts, respectively. The characterization and determination of NPs in TD-NP products and NBWs were carried out by measuring constituent particle sizes, hydrodynamic diameters, zeta potentials, and surface chemistry. The results show that most NBWs had different characteristics compared with those of conventional sparkling waters, but nanobubbles were unstable during storage. On the other hand, powdered TD-NP products were found to be highly aggregated, and the constituent particle sizes less than 100 nm were remarkably observed after dispersion compared with counterpart conventional bulk-sized products by scanning electron microscopy at low acceleration voltage and cryogenic transmission electron microscopy. The differences in chemical composition and chemical state between TD-NPs and their counterpart conventional bulk products were also found by X-ray photoelectron spectroscopy. These findings will provide basic information about the presence of NPs in nano-labeled products and be useful to understand and predict the potential toxicity of NPs applied to the food industry.

20.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210022

RESUMO

Food additive amorphous silicon dioxide (SiO2) particles are manufactured by two different methods-precipitated and fumed procedures-which can induce different physicochemical properties and biological fates. In this study, precipitated and fumed SiO2 particles were characterized in terms of constituent particle size, hydrodynamic diameter, zeta potential, surface area, and solubility. Their fates in intestinal cells, intestinal barriers, and tissues after oral administration in rats were determined by optimizing Triton X-114-based cloud point extraction (CPE). The results demonstrate that the constituent particle sizes of precipitated and fumed SiO2 particles were similar, but their aggregate states differed from biofluid types, which also affect dissolution properties. Significantly higher cellular uptake, intestinal transport amount, and tissue accumulation of precipitated SiO2 than of fumed SiO2 was found. The intracellular fates of both types of particles in intestinal cells were primarily particle forms, but slowly decomposed into ions during intestinal transport and after distribution in the liver, and completely dissolved in the bloodstream and kidneys. These findings will provide crucial information for understanding and predicting the potential toxicity of food additive SiO2 after oral intake.


Assuntos
Intestinos/química , Dióxido de Silício/administração & dosagem , Dióxido de Silício/síntese química , Administração Oral , Animais , Análise Química do Sangue , Células CACO-2 , Linhagem Celular Tumoral , Precipitação Química , Feminino , Humanos , Intestinos/citologia , Rim/química , Fígado/química , Nanopartículas , Octoxinol/química , Tamanho da Partícula , Ratos , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA