Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(4): 969-977, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213292

RESUMO

Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl ß-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.


Assuntos
Escherichia coli , Índigo Carmim , Indóis , Triptofano , Triptofano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Indóis/metabolismo , Índigo Carmim/metabolismo , Triptofanase/genética , Triptofanase/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Meios de Cultura/química , Oxigenases/genética , Oxigenases/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Plasmídeos/genética , Engenharia Metabólica/métodos , Fermentação , Concentração de Íons de Hidrogênio , Corantes/metabolismo , Temperatura
2.
Int J Biol Macromol ; 256(Pt 2): 128376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007029

RESUMO

As polyhydroxybutyrate (P(3HB)) was struggling with mechanical properties, efforts have been directed towards increasing mole fraction of 3-hydroxyhexanoate (3HHx) in P(3HB-co-3HHx) to improve the properties of polyhydroxyalkanoates (PHAs). Although genetic modification had significant results, there were several issues related to cell growth and PHA production by deletion of PHA synthetic genes. To find out easier strategy for high 3HHx mole fraction without gene deletion, Cupriavidus necator H16 containing phaC2Ra-phaACn-phaJ1Pa was examined with various oils resulting that coconut oil gave the highest 3HHx mole fraction. When fatty acid composition analysis with GC-MS was applied, coconut oil was found to have very different composition from other vegetable oil containing very high lauric acid (C12) content. To find out specific fatty acid affecting 3HHx fraction, different fatty acids from caproic acid (C6) to stearic acid (C18) was evaluated and the 3HHx mole fraction was increased to 26.5 ± 1.6 % using lauric acid. Moreover, the 3HHx mole fraction could be controlled from 9 % to 31.1 % by mixing bean oil and lauric acid with different ratios. Produced P(3HB-co-3HHx) exhibited higher molecular than P(3HB-co-3HHx) from phaB-deletion mutant. This study proposes another strategy to increase 3HHx mole fraction with easier way by modifying substrate composition without applying deletion tools.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Poli-Hidroxibutiratos , Caproatos/química , Ácido 3-Hidroxibutírico/química , Cupriavidus necator/genética , Óleo de Coco , Hidroxibutiratos , Poli-Hidroxialcanoatos/química , Ácidos Láuricos
3.
Int J Biol Macromol ; 257(Pt 2): 128687, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101655

RESUMO

Synthetic biodegradable and bio-based polymers have emerged as sustainable alternatives to nonrenewable petroleum-derived polymers which cause serious environmental issues. In particular, polyhydroxyalkanoates (PHA) are promising biopolymers owing to their outstanding biodegradability and biocompatibility. The production of the homopolymer poly(3-hydroxybutyrate) (PHB) and copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from type II methanotrophs via microbial fermentation was presented. For the efficient extraction and recovery of intracellular PHA from methanotrophs, different extraction approaches were investigated including solvent extraction using 1,3-dioxolane as a green solvent, integrated cell lysis and solvent extraction, and cell digestion without the use of organic solvents. Among various extraction approaches, the integrated method exhibited the highest extraction performance, with PHA recovery and purity exceeding 91 % and 93 %, respectively, even when the PHA content of the cells was low. Furthermore, the molecular weight, thermal stability, and mechanical properties of the recovered PHA were comprehensively analyzed to suggest its suitable practical applications. The obtained properties were comparable to that of the commercial PHA products and PHA produced from other microbial species, indicating an efficient recovery of high-quality PHA produced from methanotrophs.


Assuntos
Poli-Hidroxialcanoatos , Biopolímeros , Ácido 3-Hidroxibutírico , Hidroxibutiratos , Solventes
4.
Bioresour Technol ; 389: 129853, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813313

RESUMO

The production of polyhydroxyalkanoates (PHAs) through the biological conversion of methane is a promising solution to address both methane emissions and plastic waste. Type II methanotrophs naturally accumulate a representative PHA, poly(3-hydroxybutyrate) (PHB), using methane as the sole carbon source. In this study, we aimed to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV copolymer) with improved properties compared with PHB, using the type II methanotroph, Methylocystis sp. MJC1. We optimized the pH, valerate concentration, and valerate supply time in a one-step cultivation process using a gas bioreactor to enhance PHBV copolymer production yield and the 3-hydroxyvalerate (3HV) molar fraction. Under the optimal conditions, the biomass reached 21.3 g DCW/L, and PHBV copolymer accumulation accounted for 41.9 % of the dried cell weight, with a 3HV molar fraction of 28.4 %. The physicochemical properties of the purified PHBV copolymer were characterized using NMR, FTIR, TGA, DSC, and GPC.


Assuntos
Methylocystaceae , Poliésteres , Hidroxibutiratos , Valeratos , Metano
5.
Bioresour Technol ; 384: 129290, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290712

RESUMO

Macroalgae (seaweed) is considered a favorable feedstock for polyhydroxyalkanoates (PHAs) production owing to its high productivity, low land and freshwater requirement, and renewable nature. Among different microbes Halomonas sp. YLGW01 can utilize algal biomass-derived sugars (galactose and glucose) for growth and PHAs production. Biomass-derived byproducts furfural, hydroxymethylfurfural (HMF), and acetate affects Halomonas sp. YLGW01 growth and poly(3-hydroxybutyrate) (PHB) production i.e., furfural > HMF > acetate. Eucheuma spinosum biomass-derived biochar was able to remove 87.9 % of phenolic compounds from its hydrolysate without affecting sugar concentration. Halomonas sp. YLGW01 grows and accumulates a high amount of PHB at 4 % NaCl. The use of detoxified unsterilized media resulted in high biomass (6.32 ± 0.16 g cdm/L) and PHB production (3.88 ± 0.04 g/L) compared to undetoxified media (3.97 ± 0.24 g cdm/L, 2.58 ± 0.1 g/L). The finding suggests that Halomonas sp. YLGW01 has the potential to valorize macroalgal biomass into PHAs and open a new avenue for renewable bioplastic production.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Alga Marinha , Açúcares , Furaldeído
6.
J Microbiol Biotechnol ; 33(6): 724-735, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37072678

RESUMO

NdgR, a global regulator in soil-dwelling and antibiotic-producing Streptomyces, is known to regulate branched-chain amino acid metabolism by binding to the upstream region of synthetic genes. However, its numerous and complex roles are not yet fully understood. To more fully reveal the function of NdgR, phospholipid fatty acid (PLFA) analysis with gas chromatography-mass spectrometry (GC-MS) was used to assess the effects of an ndgR deletion mutant of Streptomyces coelicolor. The deletion of ndgR was found to decrease the levels of isoleucine- and leucine-related fatty acids but increase those of valine-related fatty acids. Furthermore, the defects in leucine and isoleucine metabolism caused by the deletion impaired the growth of Streptomyces at low temperatures. Supplementation of leucine and isoleucine, however, could complement this defect under cold shock condition. NdgR was thus shown to be involved in the control of branched-chain amino acids and consequently affected the membrane fatty acid composition in Streptomyces. While isoleucine and valine could be synthesized by the same enzymes (IlvB/N, IlvC, IlvD, and IlvE), ndgR deletion did not affect them in the same way. This suggests that NdgR is involved in the upper isoleucine and valine pathways, or that its control over them differs in some respect.


Assuntos
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Isoleucina/metabolismo , Valina , Leucina , Ácidos Graxos/metabolismo , Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Streptomyces/metabolismo
7.
Bioresour Technol ; 370: 128571, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603752

RESUMO

In this study, fourteen types of biochar produced using seven biomasses at temperatures 300 °C and 600 °C were screened for phenolics (furfural and hydroxymethylfurfural (HMF)) removal. Eucheuma spinosum biochar (EB-BC 600) showed higher adsorption capacity to furfural (258.94 ± 3.2 mg/g) and HMF (222.81 ± 2.3 mg/g). Adsorption kinetics and isotherm experiments interpreted that EB-BC 600 biochar followed the pseudo-first-order kinetic and Langmuir isotherm model for both furfural and HMF adsorption. Different hydrolysates were detoxified using EB-BC 600 biochar and used as feedstock for engineered Escherichia coli. An increased polyhydroxyalkanoates (PHA) production with detoxified barley biomass hydrolysate (DBBH: 1.71 ± 0.07 g PHA/L), detoxified miscanthus biomass hydrolysate (DMBH: 0.87 ± 0.03 g PHA/L) and detoxified pine biomass hydrolysate (DPBH: 1.28 ± 0.03 g PHA/L) was recorded, which was 2.8, 6.4 and 3.4 folds high as compared to undetoxified hydrolysates. This study reports the mechanism involved in furfural and HMF removal using biochar and valorization of hydrolysate into PHA.


Assuntos
Poli-Hidroxialcanoatos , Biomassa , Furaldeído , Carvão Vegetal
8.
Antibiotics (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009888

RESUMO

Bacteria can evade antibiotics by acquiring resistance genes, as well as switching to a non-growing dormant state without accompanying genetic modification. Bacteria in this quiescent state are called persisters, and this non-inheritable ability to withstand multiple antibiotics is referred to as antibiotic tolerance. Although all bacteria are considered to be able to form antibiotic-tolerant persisters, the antibiotic tolerance of extremophilic bacteria is poorly understood. Previously, we identified the psychrotolerant bacterium Pseudomonas sp. B14-6 from the glacier foreland of Midtre Lovénbreen in High Arctic Svalbard. Herein, we investigated the resistance and tolerance of Pseudomonas sp. B14-6 against aminoglycosides at various temperatures. This bacterium was resistant to streptomycin and susceptible to apramycin, gentamicin, kanamycin, and tobramycin. The two putative aminoglycoside phosphotransferase genes aph1 and aph2 were the most likely contributors to streptomycin resistance. Notably, unlike the mesophilic Pseudomonas aeruginosa PA14, this cold-adapted bacterium demonstrated reduced susceptibility to all tested aminoglycosides in a temperature-dependent manner. Pseudomonas sp. B14-6 at a lower temperature formed the persister cells that shows tolerance to the 100-fold minimum inhibitory concentration (MIC) of gentamicin, as well as the partially tolerant cells that withstand 25-fold MIC gentamicin. The temperature-dependent gentamicin tolerance appears to result from reduced metabolic activity. Lastly, the partially tolerant Pseudomonas sp. B14-6 cells could slowly proliferate under the bactericidal concentrations of aminoglycosides. Our results demonstrate that Pseudomonas sp. B14-6 has a characteristic ability to form cells with a range of tolerance, which appears to be inversely proportional to its growth rate.

9.
Bioresour Technol ; 359: 127499, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35718248

RESUMO

The present study deals with the utilization of lignocellulosic hydrolysate-based carbon source for exopolysaccharide (EPS) production using newly reported marine Echinicola sediminis BBL-M-12. This bacterium produced 7.56 g L-1 and 5.32 g L-1 of EPS on supplementing 30 g L-1 glucose and 10 g L-1 xylose as the sole carbon source, respectively. Whereas on feeding Miscanthus hydrolysate (MCH) with glucose content adjusting to 20 g L-1, E. sediminis BBL-M-12 produced 6.18 g L-1 of EPS. The inhibitors study showed bacterium could tolerate higher concentrations of fermentation inhibitors include furfural (0.05%), 5-hydroxymethylfurfural (0.1%), vanillin (0.1%) and acetate (0.5%). Moreover, the EPS composition was greatly altered with the type and concentration of carbon source supplied, although ß-D-Glucopyranose, ß-D-Galactopyranose, and ß-D-Xylopyranose were the dominant monomers detected. Interestingly, E. sediminis BBL-M-12 EPS revealed excellent environmental applications like clay flocculation, oil emulsification, and removal of humic acid, textile dye, and heavy metal from the aqueous phase.


Assuntos
Carbono , Lignina , Fermentação , Glucose
10.
Chemosphere ; 296: 134034, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183576

RESUMO

The existing study deals with adsorptive removal of the endocrine-disrupting chemical bisphenol-A and toxic azo dye solvent black-3 from single and binary solutions. These two chemicals are commonly used as an additive in the synthetic plastic industries. Among the tested twenty pristine and modified biochars, the pristine pinecone biochar produced at 750 °C revealed greater bisphenol-A removal. Simulation of the experimental data obtained for bisphenol-A and dye removal from the single-component solution offered a best-fit to Elovich (R2 > 0.98) and pseudo-second-order (R2 > 0.99) kinetic models, respectively. Whereas for the bisphenol-A + dye removal from binary solution, the values for bisphenol-A adsorption were best suited to Elovich (R2 > 0.98), while pseudo-second-order (R2 > 0.99) for dye removal. Similarly, the two-compartment model also demonstrated better values (R2 > 0.92) for bisphenol-A and dye removal from single and binary solutions with greater Ffast values (except for bisphenol-A in binary solution). The Langmuir isotherm model demonstrated the highest regression coefficient values (R2 > 0.99) for bisphenol-A and dye removal with the highest adsorption capacity of 38.387 mg g-1 and 346.856 mg g-1, correspondingly. Besides, the co-existence of humic acid revealed a positive impact on bisphenol-A removal, while the dye removal rate was slightly hindered in presence of humic acid. The absorption process showed monolayer coverage of biochar surface with contaminants using a chemisorption mechanism with fast reactions between functional groups on the adsorbate and adsorbent. Whereas the adsorption mechanism was primarily controlled by hydrogen bonding, hydrophobic and π-π electron-donor-acceptor interactions as confirmed by FTIR, XPS, and pH investigations.


Assuntos
Plásticos , Poluentes Químicos da Água , Adsorção , Compostos Azo , Carvão Vegetal/química , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Cinética , Soluções , Solventes , Poluentes Químicos da Água/análise
11.
Biotechnol J ; 17(2): e2100397, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34894414

RESUMO

The cellular components of Akkermansia muciniphila are considered potential biotherapeutics for the improvement of obesity, diabetes, and metabolic diseases. However, the molecular-based mechanism of A. muciniphila for treatment of obesity, which can provide important evidence for human research, has rarely been explored. Here, we applied integrative multiomics approaches to investigate the underlying molecular mechanism involved in obesity treatment by A. muciniphila. First, the treatment with a cell lysate of A. muciniphila reduced lipid accumulation in 3T3-L1 cells and downregulated the mRNA expression of proteins involved in adipogenesis and lipogenesis. Our proteomic results revealed that A. muciniphila decreased the expression of proteins involved in fat cell differentiation, fatty acid metabolism, and energy metabolism in adipocytes. Moreover, A. muciniphila significantly reduced the level of metabolites related to glycolysis, the TCA cycle, and ATP in adipocytes. Interestingly, serine protease inhibitor A3 (SERPINA3) homologs were overexpressed in the 3T3-L1 cells treated with A. muciniphila. Small interfering RNA (siRNA) transfection demonstrated that A. muciniphila upregulates SERPINA3G expression and inhibits lipogenesis in adipocytes. Taken together, our multiomics-based approaches enabled to uncover the molecular mechanism of A. muciniphila for treatment of obesity and provide potent anti-lipogenic agents.


Assuntos
Adipogenia , Lipogênese , Adipócitos , Adipogenia/genética , Akkermansia , Humanos , Proteômica
12.
Polymers (Basel) ; 13(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925903

RESUMO

Arctic bacteria employ various mechanisms to survive harsh conditions, one of which is to accumulate carbon and energy inside the cell in the form of polyhydroxyalkanoate (PHA). Whole-genome sequencing of a new Arctic soil bacterium Pseudomonas sp. B14-6 revealed two PHA-production-related gene clusters containing four PHA synthase genes (phaC). Pseudomonas sp. B14-6 produced poly(6% 3-hydroxybutyrate-co-94% 3-hydroxyalkanoate) from various carbon sources, containing short-chain-length PHA (scl-PHA) and medium-chain-length PHA (mcl-PHA) composed of various monomers analyzed by GC-MS, such as 3-hydroxybutyrate, 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, 3-hydroxydodecenoic acid, 3-hydroxydodecanoic acid, and 3-hydroxytetradecanoic acid. By optimizing the PHA production media, we achieved 34.6% PHA content using 5% fructose, and 23.7% PHA content using 5% fructose syrup. Differential scanning calorimetry of the scl-co-mcl PHA determined a glass transition temperature (Tg) of 15.3 °C, melting temperature of 112.8 °C, crystallization temperature of 86.8 °C, and 3.82% crystallinity. In addition, gel permeation chromatography revealed a number average molecular weight of 3.6 × 104, weight average molecular weight of 9.1 × 104, and polydispersity index value of 2.5. Overall, the novel Pseudomonas sp. B14-6 produced a polymer with high medium-chain-length content, low Tg, and low crystallinity, indicating its potential use in medical applications.

13.
Polymers (Basel) ; 13(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805577

RESUMO

Polyhydroxyalkanoates (PHAs) are attractive new bioplastics for the replacement of plastics derived from fossil fuels. With their biodegradable properties, they have also recently been applied to the medical field. As poly(3-hydroxybutyrate) produced by wild-type Ralstonia eutropha has limitations with regard to its physical properties, it is advantageous to synthesize co- or terpolymers with medium-chain-length monomers. In this study, tung oil, which has antioxidant activity due to its 80% α-eleostearic acid content, was used as a carbon source and terpolymer P(53 mol% 3-hydroxybytyrate-co-2 mol% 3-hydroxyvalerate-co-45 mol% 3-hydroxyhexanoate) with a high proportion of 3-hydroxyhexanoate was produced in R. eutropha Re2133/pCB81. To avail the benefits of α-eleostearic acid in the tung oil-based medium, we performed partial harvesting of PHA by using a mild water wash to recover PHA and residual tung oil on the PHA film. This resulted in a film coated with residual tung oil, showing antioxidant activity. Here, we report the first application of tung oil as a substrate for PHA production, introducing a high proportion of hydroxyhexanoate monomer into the terpolymer. Additionally, the residual tung oil was used as an antioxidant coating, resulting in the production of bioactive PHA, expanding the applicability to the medical field.

14.
Sci Total Environ ; 781: 146636, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784526

RESUMO

The present investigation deals with the adsorptive removal of crude petroleum oil from the water surface using coconut oil-modified pinewood biochar. Biochar generated at higher pyrolysis temperature (700 °C) revealed higher fatty acid-binding efficiency responsible for the excellent hydrophobicity of the biochar. Fatty acids composition attached to the biochar produced at 700 °C was (mg g-1 BC) lauric acid (9.024), myristic acid (5.065), palmitic acid (2.769), capric acid (1.639), oleic acid (1.362), stearic acid (1.114), and linoleic acid (0.130). Simulation of the experimental adsorption data of pristine and modified pinewood biochar generated at 700 °C offered the best fit to pseudo-first-order kinetics (R2 > 0.97) and Langmuir isotherm model (R2 > 0.99) based on the highest regression coefficients. Consequently, the adsorption process was mainly driven by surface hydrophobic interactions including π-π electron-donor-acceptor between electron-rich (π-donor) polycyclic aromatic hydrocarbons from the crude oil and biochar (π-acceptor). A maximum adsorption capacity (Qmax) of 5.315 g g-1 was achieved by modified floating biochar within 60 min. Whereas the reusability testing revealed 49.39% and 51.40% was the adsorption efficiency of pristine and modified biochar at the fifth adsorption-desorption cycle.


Assuntos
Petróleo , Pinus , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Óleo de Coco , Ácidos Graxos , Cinética , Ácidos Láuricos , Água , Poluentes Químicos da Água/análise
15.
Int J Biol Macromol ; 177: 413-421, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33607129

RESUMO

Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable plastic. Considering the environmental issues of petroleum-based plastics, PHB is promising as it can be degraded in a relatively short time by bacteria to water and carbon dioxide. Substantial efforts have been made to identify PHB-degrading bacteria. To identify PHB-degrading bacteria, solid-based growth or clear zone assays using PHB as the sole carbon source are the easiest methods; however, PHB is difficult to dissolve and distribute evenly, and bacteria grow slowly on PHB plates. Here, we suggest an improved PHB plate assay using cell-grown PHB produced by Halomonas sp. and recovered by sodium dodecyl sulfate (SDS). Preparation using SDS resulted in evenly distributed PHB plates that could be used for sensitive depolymerase activity screening in less time compared with solvent-melted pellet or cell-grown PHB. With this method, we identified 15 new strains. One strain, Cutibacterium sp. SOL05 (98.4% 16S rRNA similarity to Cutibacterium acne), showed high PHB depolymerase activity in solid and liquid conditions. PHB degradation was confirmed by clear zone size, liquid culture, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results indicate this method can be used to easily identify PHB-degrading bacteria from various sources to strengthen the benefits of bioplastics.


Assuntos
Propionibacteriaceae , Dodecilsulfato de Sódio/química , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Propionibacteriaceae/classificação , Propionibacteriaceae/genética , Propionibacteriaceae/crescimento & desenvolvimento , Propionibacteriaceae/isolamento & purificação
16.
Bioresour Technol ; 324: 124674, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33445012

RESUMO

In the present study, an exopolysaccharide (EPS)-producing bacterial strain was isolated from the Eastern Sea (Sokcho Beach) of South Korea and identified as Sphingobium yanoikuyae BBL01. Media optimization was performed using response surface design, and a yield of 2.63 ± 0.02 g/L EPS was achieved. Purified EPS produced using lactose as the main carbon source was analyzed by GC-MS and found to be composed of α-D-xylopyranose (28.6 ± 2.0%), ß-D-glucopyranose (21.0 ± 1.6%), α-D-mannopyranose (18.5 ± 1.2%), ß-d-mannopyranose (13.1 ± 1.4%), ß-D-xylopyranose (10.2 ± 2.1%), α-d-talopyranose (5.9 ± 1.1%), and ß-d-galacturonic acid (2.43 ± 0.8%). Interestingly, different carbon sources (glucose, galactose, glycerol, lactose, sucrose, and xylose) showed no effect on EPS monomer composition, with a slight change in the mass percentage of various monosaccharides. Purified EPS was stable up to 233 °C, indicating its possible suitability as a thickening and gelling agent for food-related applications. EPS also showed considerable emulsifying, flocculating, free-radical scavenging, and metal-complexion activity, suggesting various biotechnological applications.


Assuntos
Bioprospecção , Polissacarídeos Bacterianos , Monossacarídeos , República da Coreia , Sphingomonadaceae
17.
Bioprocess Biosyst Eng ; 44(4): 891-899, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33486578

RESUMO

Cadaverine, 1,5-diaminopentane, is one of the most promising chemicals for biobased-polyamide production and it has been successfully produced up to molar concentration. Pyridoxal 5'-phosphate (PLP) is a critical cofactor for inducible lysine decarboxylase (CadA) and is required up to micromolar concentration level. Previously the regeneration of PLP in cadaverine bioconversion has been studied and salvage pathway pyridoxal kinase (PdxY) was successfully introduced; however, this system also required a continuous supply of adenosine 5'-triphosphate (ATP) for PLP regeneration from pyridoxal (PL) which add in cost. Herein, to improve the process further a method of ATP regeneration was established by applying baker's yeast with jhAY strain harboring CadA and PdxY, and demonstrated that providing a moderate amount of adenosine 5'-triphosphate (ATP) with the simple addition of baker's yeast could increase cadaverine production dramatically. After optimization of reaction conditions, such as PL, adenosine 5'-diphosphate, MgCl2, and phosphate buffer, we able to achieve high production (1740 mM, 87% yield) from 2 M L-lysine. Moreover, this approach could give averaged 80.4% of cadaverine yield after three times reactions with baker's yeast and jhAY strain. It is expected that baker's yeast could be applied to other reactions requiring an ATP regeneration system.


Assuntos
Trifosfato de Adenosina/metabolismo , Cadaverina/química , Escherichia coli/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae , Ágar/química , Biotecnologia/métodos , Biotransformação , Cadaverina/metabolismo , Carboxiliases , Fermentação , Microbiologia Industrial/instrumentação , Microbiologia Industrial/métodos , Lisina/química , Lisina/metabolismo , Polímeros/química , Piridoxal , Regeneração
18.
Chemosphere ; 264(Pt 2): 128539, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33059279

RESUMO

The present study aimed towards adsorptive removal of the toxic azo dye onto biochar derived from Eucheuma spinosum biomass. Characterization of the produced biochar was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET). Eucheuma spinosum biochar (ES-BC) produced at 600 °C revealed a maximum adsorption capacity of 331.97 mg/g towards reactive red 120 dye. The adsorption data fitted best to the pseudo-second order kinetics (R2 > 0.99) and Langmuir isotherm (R2 > 0.98) models. These adsorption models signified the chemisorption mechanism with monolayer coverage of the adsorbent surface with dye molecules. Furthermore, the adsorption process was mainly governed by electrostatic interaction, ion exchange, metal complexation, and hydrogen bonding as supported by the solution pH, FTIR, XPS, and XRD investigation. Nevertheless, alone adsorption technology could not offer a complete solution for eliminating the noxious dyes. Therefore, the bioelectrochemical system (BES) equipped with previously isolated marine Shewanella marisflavi BBL25 was intended for the complete remediation of azo dye. The BES II demonstrated highest dye decolorization (97.06%) within 48 h at biocathode where the reductive cleavage of the azo bond occurred. Cyclic voltammetry (CV) studies of the BES revealed perfect redox reactions taking place where the redox mediators shuttled the electrons to the dye molecule to accelerate the dye decolorization. Besides, the GC-MS analysis revealed biotransformation of the dye into less toxic metabolites as tested using a phyto and cytogenotoxicity.


Assuntos
Shewanella , Poluentes Químicos da Água , Adsorção , Compostos Azo , Biomassa , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
19.
J Microbiol Biotechnol ; 31(1): 115-122, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33046680

RESUMO

Phenol-soluble modulins (PSMs) are responsible for regulating biofilm formation, persister cell formation, pmtR expression, host cell lysis, and anti-bacterial effects. To determine the effect of psm deletion on methicillin-resistant Staphylococcus aureus, we investigated psm deletion mutants including Δpsmα, Δpsmß, and Δpsmαß;. These mutants exhibited increased ß-lactam antibiotic resistance to ampicillin and oxacillin that was shown to be caused by increased Nacetylmannosamine kinase (nanK) mRNA expression, which regulates persister cell formation, leading to changes in the pattern of phospholipid fatty acids resulting in increased anteiso-C15:0, and increased membrane hydrophobicity with the deletion of PSMs. When synthetic PSMs were applied to Δpsmα and Δpsmß mutants, treatment of Δpsmα with PSMα1-4 and Δpsmß with PSMß1-2 restored the sensitivity to oxacillin and slightly reduced the biofilm formation. Addition of a single fragment showed that α1, α2, α3, and ß2 had an inhibiting effect on biofilms in Δpsmα; however, ß1 showed an enhancing effect on biofilms in Δpsmß. This study demonstrates a possible reason for the increased antibiotic resistance in psm mutants and the effect of PSMs on biofilm formation.


Assuntos
Toxinas Bacterianas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Genes Bacterianos/genética , Mutação , Infecções Estafilocócicas
20.
Int J Biol Macromol ; 167: 151-159, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249160

RESUMO

Poly(3-hydroxybutyrate) (PHB) is a common polyhydroxyalkanoate (PHA) with potential as an alternative for petroleum-based plastics. Previously, we reported a new strain, Halomonas sp. YLGW01, which hyperproduces PHB with 94% yield using fructose. In this study, we examined the PHB production machinery of Halomonas sp. YLGW01 in more detail by deep-genome sequencing, which revealed a 3,453,067-bp genome with 65.1% guanine-cytosine content and 3054 genes. We found two acetyl-CoA acetyltransferases (Acetoacetyl-CoA thiolase, PhaA), one acetoacetyl-CoA reductase (PhaB), two PHB synthases (PhaC1, PhaC2), PHB depolymerase (PhaZ), and Enoyl-CoA hydratase (PhaJ) in the genome, along with two fructose kinases and fructose transporter systems, including the phosphotransferase system (PTS) and ATP-binding transport genes. We then examined the PHB production by Halomonas sp. YLGW01 using high-fructose corn syrup (HFCS) containing fructose, glucose, and sucrose in sea water medium, resulting in 7.95 ± 0.11 g/L PHB (content, 67.39 ± 0.34%). PHB was recovered from Halomonas sp. YLGW01 using different detergents; the use of Tween 20 and SDS yielded micro-sized granules with high purity. Overall, these results reveal the distribution of PHB synthetic genes and the sugar utilization system in Halomonas sp. YLGW01 and suggest a possible method for PHB recovery.


Assuntos
Meios de Cultura , Fermentação , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Açúcares/química , Açúcares/metabolismo , Biomassa , Vias Biossintéticas/genética , Biologia Computacional/métodos , Genoma Bacteriano , Halomonas/genética , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA