Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15843, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985564

RESUMO

We report a universal terahertz (THz) emission behavior from simple Ni, Fe, and Co metallic ferromagnetic films, triggered by the femtosecond laser pulse and subsequent photoinduced demagnetization on an ultrafast time scale. THz emission behavior in ferromagnetic films is found to be consistent with initial magnetization states controlled by external fields, where the hysteresis of the maximal THz emission signal is observed to be well-matched with the magnetic hysteresis curve. It is experimentally demonstrated that the ultrafast THz emission by the photoinduced demagnetization is controllable in a simple way by external fields as well as pump fluences.

2.
Sci Rep ; 10(1): 6355, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286462

RESUMO

Understanding of ultrafast spin dynamics is crucial for future spintronic applications. In particular, the role of non-thermal electrons needs further investigation in order to gain a fundamental understanding of photoinduced demagnetization and remagnetization on a femtosecond time scale. We experimentally demonstrate that non-thermal electrons existing in the very early phase of the photoinduced demagnetization process play a key role in governing the overall ultrafast spin dynamics behavior. We simultaneously measured the time-resolved reflectivity (TR-R) and the magneto-optical Kerr effect (TR-MOKE) for a Co/Pt multilayer film. By using an extended three-temperature model (E3TM), the quantitative analysis, including non-thermal electron energy transfer into the subsystem (thermal electron, lattice, and spin), reveals that energy flow from non-thermal electrons plays a decisive role in determining the type I and II photoinduced spin dynamics behavior. Our finding proposes a new mechanism for understanding ultrafast remagnetization dynamics.

3.
Anal Chem ; 84(24): 10543-8, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23151306

RESUMO

Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.


Assuntos
Temperatura Baixa , Ciclotrons , Análise de Fourier , Espectrometria de Massas/métodos , Nitrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA