Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 8(2): 847-858, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35073046

RESUMO

Titanium (Ti) is the most commonly used biomaterial for dental implants. When inserting Ti implants into jawbones, the main issue is the lack of strong bonding between the Ti implant and the host bone (osseointegration). Inspired by the outstanding adhesion performance of natural phenolic compounds on metal substrates and promoting effect for cell adhesion, we coated a natural plant extract, Dipterocarpus tuberculatus (MED), on Ti implants. We tested three groups of Ti plates and screw-shaped fixtures: nontreated Ti as commercially produced, ozone-treated Ti as commonly used surface modification for dental implants, and MED-coated Ti. Interestingly, the MED coating on the Ti plate preserved the surface wetting property for 20 days, whereas the hydrophilic wetting of ozone-treated Ti was readily transformed to hydrophobic within a day. Computerized tomography and histopathological analysis revealed that MED coating enhanced new bone tissue formation and regeneration. The gene expression level of integrin as a bone cell adhesion receptor and its downstream key regulators was significantly increased than that of ozone-treated Ti. Therefore, we suggest considering MED-mediated cell signaling pathways in screening natural products for cell adhesion and osseointegration, and MED as a suitable coating agent for improving Ti implantation.


Assuntos
Osseointegração , Titânio , Extratos Vegetais/farmacologia , Próteses e Implantes , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
2.
Environ Microbiol ; 20(11): 3992-4008, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30252196

RESUMO

Ornithine lipids (OLs) are bacteria-specific lipids that are found in the outer membrane of Gram (-) bacteria and increase as surrogates of phospholipids under phosphate-limited environmental conditions. We investigated the effects of OL increase in bacterial membranes on pathogen virulence and the host immune response. In Pseudomonas aeruginosa, we increased OL levels in membranes by overexpressing the OL-synthesizing operon (olsBA). These increases changed the bacterial surface charge and hydrophobicity, which reduced bacterial susceptibility to antibiotics and antimicrobial peptides (AMPs), interfered with the binding of macrophages to bacterial cells and enhanced bacterial biofilm formation. When grown under low phosphate conditions, P. aeruginosa became more persistent in the treatment of antibiotics and AMPs in an olsBA-dependent manner. While OLs increased persistence, they attenuated P. aeruginosa virulence; in host cells, they reduced the production of inflammatory factors (iNOS, COX-2, PGE2 and nitric oxide) and increased intracellular Ca2+ release. Exogenously added OL had similar effects on P. aeruginosa and host cells. Our results suggest that bacterial OL plays important roles in bacteria-host interaction in a way that enhances bacterial persistence and develops chronic adaptation to infection.


Assuntos
Lipídeos/fisiologia , Ornitina/análogos & derivados , Pseudomonas aeruginosa/fisiologia , Animais , Antibacterianos/farmacologia , Caenorhabditis elegans/microbiologia , Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno , Lipídeos de Membrana/fisiologia , Ornitina/biossíntese , Ornitina/fisiologia , Fosfatos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Tenebrio/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA