RESUMO
BACKGROUND: Seasonal malaria chemoprevention (SMC) using sulfadoxine-pyrimethamine plus amodiaquine (SP-AQ), is a community-based malaria preventive strategy commonly used in the Sahel region of sub-Saharan Africa. However, to date it has not been implemented in East Africa due to high SP resistance levels. This paper is a report on the implementation of SMC outside of the Sahel in an environment with a high level of presumed SP-resistance: five cycles of SMC using SPAQ were administered to children 3-59 months during a period of high malaria transmission (July-December 2019) in 21 villages in South Sudan. METHODS: A population-based SMC coverage survey was combined with a longitudinal time series analysis of health facility and community health data measured after each SMC cycle. SMC campaign effectiveness was assessed by Poisson model. SPAQ molecular resistance markers were additionally analysed from dried blood spots from malaria confirmed patients. RESULTS: Incidence of uncomplicated malaria was reduced from 6.6 per 100 to an average of 3.2 per 100 after SMC administration (mean reduction: 53%) and incidence of severe malaria showed a reduction from 21 per 10,000 before SMC campaign to a mean of 3.3 per 10,000 after each cycle (mean reduction: 84%) in the target group when compared to before the SMC campaign. The most prevalent molecular haplotype associated with SP resistance was the IRNGE haplotype (quintuple mutant, with 51I/59R/108N mutation in pfdhfr + 437G/540E in pfdhps). In contrast, there was a low frequency of AQ resistance markers and haplotypes resistant to both drugs combined (< 2%). CONCLUSIONS: The SMC campaign was effective and could be used as an additional preventive tool in seasonal malaria settings outside of the Sahel, especially in areas where access to health care is unstable. Malaria case load reduction was observed despite the high level of resistance to SP.
Assuntos
Antimaláricos , Malária , Criança , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Sudão do Sul , Estações do Ano , Malária/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , Quimioprevenção , Morbidade , Resistência a Medicamentos/genéticaRESUMO
Artemisinin-combined treatments are the recommended first-line treatment of Plasmodium falciparum malaria, but they are being threatened by emerging artemisinin resistance. Mutations in pfk13 are the principal molecular marker for artemisinin resistance. This study characterizes the presence of mutations in pfk13 in P. falciparum in Western Equatoria State, South Sudan. We analyzed 468 samples from patients with symptomatic malaria and found 15 mutations (8 nonsynonymous and 7 synonymous). Each mutation appeared only once, and none were validated or candidate markers of artemisinin resistance. However, some mutations were in the same or following position of validated and candidate resistance markers, suggesting instability of the gene that could lead to resistance. The R561L nonsynonymous mutation was found in the same position as the R561H validated mutation. Moreover, the A578S mutation, which is widespread in Africa, was also reported in this study. We found a high diversity of other pfk13 mutations in low frequency. Therefore, routine molecular surveillance of resistance markers is highly recommended to promptly detect the emergence of resistance-related mutations and to limit their spread.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Sudão do Sul , Proteínas de Protozoários/genética , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , MutaçãoRESUMO
Pfhrp2 and pfhrp3 gene deletions threaten the use of Plasmodium falciparum malaria rapid diagnostic tests globally. In South Sudan, deletion frequencies were 15.6% for pfhrp2, 20.0% for pfhrp3, and 7.5% for double deletions. Deletions were approximately twice as prevalent in monoclonal infections than in polyclonal infections.