Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631319

RESUMO

Radiosterilized pig skin (RPS) has been used as a dressing for burns since the 1980s. Its similarity to human skin in terms of the extracellular matrix (ECM) allows the attachment of mesenchymal stem cells, making it ideal as a scaffold to create cellularized constructs. The use of silver nanoparticles (AgNPs) has been proven to be an appropriate alternative to the use of antibiotics and a potential solution against multidrug-resistant bacteria. RPS can be impregnated with AgNPs to develop nanomaterials capable of preventing wound infections. The main goal of this study was to assess the use of RPS as a scaffold for autologous fibroblasts (Fb), keratinocytes (Kc), and mesenchymal stem cells (MSC) in the treatment of second-degree burns (SDB). Additionally, independent RPS samples were impregnated with AgNPs to enhance their properties and further develop an antibacterial dressing that was initially tested using a burn mouse model. This protocol was approved by the Research and Ethics Committee of the INRLGII (INR 20/19 AC). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis of the synthesized AgNPs showed an average size of 10 nm and rounded morphology. Minimum inhibitory concentrations (MIC) and Kirby-Bauer assays indicated that AgNPs (in solution at a concentration of 125 ppm) exhibit antimicrobial activity against the planktonic form of S. aureus isolated from burned patients; moreover, a log reduction of 1.74 ± 0.24 was achieved against biofilm formation. The nanomaterial developed with RPS impregnated with AgNPs solution at 125 ppm (RPS-AgNPs125) facilitated wound healing in a burn mouse model and enhanced extracellular matrix (ECM) deposition, as analyzed by Masson's staining in histological samples. No silver was detected by energy-dispersive X-ray spectroscopy (EDS) in the skin, and neither by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in different organs of the mouse burn model. Calcein/ethidium homodimer (EthD-1), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and scanning electron microscopy (SEM) analysis demonstrated that Fb, Kc, and MSC could attach to RPS with over 95% cell viability. Kc were capable of releasing FGF at 0.5 pg above control levels, as analyzed by ELISA assays. An autologous RPS-Fb-Kc construct was implanted in a patient with SDB and compared to an autologous skin graft. The patient recovery was assessed seven days post-implantation, and the patient was followed up at one, two, and three months after the implantation, exhibiting favorable recovery compared to the gold standard, as measured by the cutometer. In conclusion, RPS effectively can be used as a scaffold for the culture of Fb, Kc, and MSC, facilitating the development of a cellularized construct that enhances wound healing in burn patients.

2.
J Cosmet Dermatol ; 22(2): 347-353, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36409429

RESUMO

BACKGROUND: Different strategies for hand skin hygiene have been used to prevent the spread of SARS-CoV-2. However, frequent hand sanitization has been associated with skin damage. The present study aimed to evaluate hand hygiene habits during the COVID-19 pandemic and the effect of the repetitive use of soap or alcohol-based products on skin characteristics. METHODS: We conducted a survey regards hand hygiene habits acquired during the COVID-19 pandemic. Also, we performed cutometry in a cohort of individuals who cleansed their volar forearms every 30 min, during 4 h, using soap or alcohol-based products. RESULTS: We received 138 responses from people with medium-high educational level who reported a 2.5-time increase in the frequency of hand cleansing (p < 0.0001) that resulted in skin damage. An in vivo analysis of skin moisture and elasticity was also performed among 19 health workers and students. In general, skin moisture decreased with every cleansing, mainly after 2 h of washing with soap (p < 0.01), while skin elasticity only reduced after 4 h of treatment (p < 0.05). Alcohol-based solution or alcohol-based gel (70% ethanol, both) did not affect skin moisture or elasticity during testing. CONCLUSION: It is known that the excessive use of soap or alcohol-based products causes dermatological issues. The present study demonstrates that non-medicated soap significantly affects skin moisture and elasticity, probably because the soap removes the hydrolipidic protective barrier, favoring transepidermal water loss, where the lack of the appropriate stratum corneum hydration also affects skin elasticity, mainly associated with changes in epidermal structure.


Assuntos
COVID-19 , Higiene das Mãos , Humanos , Sabões/uso terapêutico , Pandemias/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Etanol/efeitos adversos
3.
Microorganisms ; 10(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144427

RESUMO

In this work, we evaluated the direct effect of a dialkyl carbamoyl chloride (DACC)-coated dressing on Staphylococcus aureus adhesion and growth in vitro, as well as the indirect effect of the dressing on fibroblast and macrophage activity. S. aureus cultures were treated with the dressing or gauze in Müller-Hinton medium or serum-supplemented Dulbecco's modified Eagle medium. Bacterial growth and attachment were assessed through colony-forming units (CFU) and residual biomass analyses. Fibroblast and macrophage co-cultures were stimulated with filtered supernatants from the bacterial cultures treated with the DACC-coated dressing, following which tumor necrosis factor (TNF)-α/transforming growth factor (TGF)-ß1 expression and gelatinolytic activity were assessed by enzyme-linked immunosorbent assays (ELISA) and zymography, respectively. The DACC-coated dressing bound 1.8−6.1% of all of the bacteria in the culture. Dressing-treated cultures presented biofilm formation in the dressing (enabling mechanical removal), with limited formation outside of it (p < 0.001). Filtered supernatants of bacterial cultures treated with the DACC-coated dressing did not over-stimulate TNF-α or TGF-ß1 expression (p < 0.001) or increase gelatinolytic activity in eukaryotic cells, suggesting that bacterial cell integrity was maintained. Based on the above data, wound caregivers should consider the use of hydrophobic dressings as a first option for the management of acute or chronic wounds.

4.
Biochim Biophys Acta Gen Subj ; 1865(2): 129782, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33160011

RESUMO

BACKGROUND: Tissue replacement is among the most important challenges in biotechnology worldwide. SCOPE OF REVIEW: We aim to highlight the importance of the intricate feedback between rheological properties and materials science and cell biological parameters in order to obtain an efficient bioink design, supported by various practical examples. MAJOR CONCLUSIONS: Viscoelastic properties of bioink formulas, rheological properties, injection speed and printing nozzle diameter must be considered in bioink design. These properties are related to cell behavior and the survival rate during and after printing. Mechanosensing can strongly influence epigenetics to modify the final cell phenotype, which can affect the replacement tissue. GENERAL SIGNIFICANCE: In tissue engineering, biotechnologists must consider the biophysical properties and biological conditions of the materials used, as well as the material delivery mode (in a case or tissue) and maturation mode (curing or biomass), to ensure the development off appropriate materials mimicking the native tissue.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Animais , Sobrevivência Celular , Humanos , Reologia , Alicerces Teciduais/química , Viscosidade
5.
J Mech Behav Biomed Mater ; 82: 310-319, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29653380

RESUMO

Fibrin and hyaluronic acid are important components of the provisional wound matrix. Through interactions with fibroblasts, they provide biophysical cues that regulate the viscoelastic properties of the extracellular matrix. To understand the roles of fibrin and hyaluronic acid in a collagenous environment, we used fibroblast populated collagen lattices (collagen, collagen-fibrin, and collagen-hyaluronic acid). Compared with collagen and collagen-hyaluronic acid cultures, collagen-fibrin cultures showed less contraction, which is correlated with increased elastic (G') and complex (|G*|) moduli, and reduced proportions of dendritic fibroblasts, despite increased αv integrin expression. Stiffness decreased during culture in collagen-fibrin environment, meanwhile phase shift (δ) values increased, clearly associated with the rise in fibrinolytic and gelatinolytic activities. These processes changed the viscoelastic properties of the system toward G' and |G*| values observed on day 5 in collagen cultures. Although less collagen turnover was observed in collagen-fibrin cultures than in collagen and collagen-hyaluronic acid cultures, collagen neosynthesis was apparently insufficient to contribute to the overall viscoelastic properties of the system. Collagen-hyaluronic acid cultures showed very limited changes during time. Firstly, they exhibited the highest δ values, suggesting an increase in the viscous behavior due to the hygroscopic properties of hyaluronic acid. These results showed that fibrin and hyaluronic acid not only affect differently the viscoelastic properties of the culture, they can tune fibroblastic activity by regulating cell attachment and extracellular matrix remodeling.


Assuntos
Colágeno/metabolismo , Fibrina/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Fenômenos Mecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Humanos , Viscosidade/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA