Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108437

RESUMO

The mechanisms mediating the restricted growth in intrauterine growth restriction (IUGR) remain to be fully established. Mechanistic target of rapamycin (mTOR) signaling functions as a placental nutrient sensor, indirectly influencing fetal growth by regulating placental function. Increased secretion and the phosphorylation of fetal liver IGFBP-1 are known to markedly decrease the bioavailability of IGF-1, a major fetal growth factor. We hypothesized that an inhibition of trophoblast mTOR increases liver IGFBP-1 secretion and phosphorylation. We collected conditioned media (CM) from cultured primary human trophoblast (PHT) cells with a silenced RAPTOR (specific inhibition of mTOR Complex 1), RICTOR (inhibition of mTOR Complex 2), or DEPTOR (activates both mTOR Complexes). Subsequently, HepG2 cells, a well-established model for human fetal hepatocytes, were cultured in CM from PHT cells, and IGFBP-1 secretion and phosphorylation were determined. CM from PHT cells with either mTORC1 or mTORC2 inhibition caused the marked hyperphosphorylation of IGFBP-1 in HepG2 cells as determined by 2D-immunoblotting while Parallel Reaction Monitoring-Mass Spectrometry (PRM-MS) identified increased dually phosphorylated Ser169 + Ser174. Furthermore, using the same samples, PRM-MS identified multiple CK2 peptides coimmunoprecipitated with IGFBP-1 and greater CK2 autophosphorylation, indicating the activation of CK2, a key enzyme mediating IGFBP-1 phosphorylation. Increased IGFBP-1 phosphorylation inhibited IGF-1 function, as determined by the reduced IGF-1R autophosphorylation. Conversely, CM from PHT cells with mTOR activation decreased IGFBP-1 phosphorylation. CM from non-trophoblast cells with mTORC1 or mTORC2 inhibition had no effect on HepG2 IGFBP-1 phosphorylation. Placental mTOR signaling may regulate fetal growth by the remote control of fetal liver IGFBP-1 phosphorylation.


Assuntos
Fator de Crescimento Insulin-Like I , Placenta , Feminino , Humanos , Gravidez , Disponibilidade Biológica , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Placenta/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Bio Protoc ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36561120

RESUMO

RNA is a vital component of the cell and is involved in a diverse range of cellular processes through a variety of functions. However, many of these functions cannot be performed without interactions with proteins. There are currently several techniques used to study protein-RNA interactions, such as electrophoretic mobility shift assay, fluorescence anisotropy, and filter binding. RNA-pulldown is a technique that uses biotinylated RNA probes to capture protein-RNA complexes of interest. First, the RNA probe and a recombinant protein are incubated to allow the in vitro interaction to occur. The fraction of bound protein is then captured by a biotin pull-down using streptavidin-agarose beads, followed by elution and immunoblotting for the recombinant protein with a His-tag-reactive probe. Overall, this method does not require specialized equipment outside what is typically found in a modern molecular laboratory and easily facilitates the maintenance of an RNase-free environment. This protocol was validated in: Nucleic Acids Res (2020), DOI: 10.1093/nar/gkaa029 Graphical abstract.

3.
Peptides ; 158: 170898, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36279985

RESUMO

In humans, coronaviruses are the cause of endemic illness and have been the causative agents of more severe epidemics. Most recently, SARS-CoV-2 was the causative agent of the COVID19 pandemic. Thus, there is a high interest in developing therapeutic agents targeting various stages of the coronavirus viral life cycle to disrupt viral propagation. Besides the development of small-molecule therapeutics that target viral proteases, there is also interest molecular tools to inhibit the initial event of viral attachment of the SARS-CoV-2 Spike protein to host ACE2 surface receptor. Here, we leveraged known structural information and peptide arrays to develop an in vitro peptide inhibitor of the Spike-ACE2 interaction. First, from previous co-crystal structures of the Spike-ACE2 complex, we identified an initial 24-residue long region (sequence: STIEEQAKTFLDKFNHEAEDLFYQ) on the ACE2 sequence that encompasses most of the known contact residues. Next, we scanned this 24-mer window along the ACE2 N-terminal helix and found that maximal binding to the SARS-CoV-2 receptor binding domain (CoV2-RBD) was increased when this window was shifted nine residues in the N-terminal direction. Further, by systematic permutation of this shifted ACE2-derived peptide we identified mutations to the wildtype sequence that confer increased binding of the CoV2-RBD. Among these peptides, we identified binding peptide 19 (referred to as BP19; sequence: SLVAVTAAQSTIEEQAKTFLDKFI) as an in vitro inhibitor of the Spike-ACE2 interaction with an IC50 of 2.08 ± 0.38 µM. Overall, BP19 adds to the arsenal of Spike-ACE2 inhibitors, and this study highlights the utility of systematic peptide arrays as a platform for the development of coronavirus protein inhibitors.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo
4.
Nucleic Acids Res ; 50(12): 6903-6918, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694846

RESUMO

Gliomas are one of the most common and lethal brain tumors among adults. One process that contributes to glioma progression and recurrence is the epithelial to mesenchymal transition (EMT). EMT is regulated by a set of defined transcription factors which tightly regulate this process, among them is the basic helix-loop-helix family member, TWIST1. Here we show that TWIST1 is methylated on lysine-33 at chromatin by SETD6, a methyltransferase with expression levels correlating with poor survival in glioma patients. RNA-seq analysis in U251 glioma cells suggested that both SETD6 and TWIST1 regulate cell adhesion and migration processes. We further show that TWIST1 methylation attenuates the expression of the long-non-coding RNA, LINC-PINT, thereby promoting EMT in glioma. Mechanistically, TWIST1 methylation represses the transcription of LINC-PINT by increasing the occupancy of EZH2 and the catalysis of the repressive H3K27me3 mark at the LINC-PINT locus. Under un-methylated conditions, TWIST1 dissociates from the LINC-PINT locus, allowing the expression of LINC-PINT which leads to increased cell adhesion and decreased cell migration. Together, our findings unravel a new mechanistic dimension for selective expression of LINC-PINT mediated by TWIST1 methylation.


Assuntos
Glioma , Proteínas Metiltransferases , RNA Longo não Codificante , Proteína 1 Relacionada a Twist , Humanos , Transição Epitelial-Mesenquimal , Proteínas Nucleares/genética , Proteínas Metiltransferases/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Glioma/metabolismo , Glioma/patologia , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral
5.
Biomolecules ; 12(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35625569

RESUMO

Jumonji C (JmjC) lysine demethylases (KDMs) catalyze the removal of methyl (-CH3) groups from modified lysyl residues. Several JmjC KDMs promote cancerous properties and these findings have primarily been in relation to histone demethylation. However, the biological roles of these enzymes are increasingly being shown to also be attributed to non-histone demethylation. Notably, KDM3A has become relevant to tumour progression due to recent findings of this enzyme's role in promoting cancerous phenotypes, such as enhanced glucose consumption and upregulated mechanisms of chemoresistance. To aid in uncovering the mechanism(s) by which KDM3A imparts its oncogenic function(s), this study aimed to unravel KDM3A substrate specificity to predict high-confidence substrates. Firstly, substrate specificity was assessed by monitoring activity towards a peptide permutation library of histone H3 di-methylated at lysine-9 (i.e., H3K9me2). From this, the KDM3A recognition motif was established and used to define a set of high-confidence predictions of demethylation sites from within the KDM3A interactome. Notably, this led to the identification of three in vitro substrates (MLL1, p300, and KDM6B), which are relevant to the field of cancer progression. This preliminary data may be exploited in further tissue culture experiments to decipher the avenues by which KDM3A imparts cancerous phenotypes.


Assuntos
Lisina , Neoplasias , Desmetilação , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji , Processamento de Proteína Pós-Traducional
6.
STAR Protoc ; 3(2): 101271, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35378885

RESUMO

Within the realm of lysine methylation, the discovery of lysine methyltransferase (KMTs) substrates has been burgeoning because of established systematic substrate screening protocols. Here, we describe a protocol enabling the systematic identification of JmjC KDM substrate preference and in vitro substrates. Systematically designed peptide libraries containing methylated lysine residues are used to characterize enzyme-substrate preference and identify new candidate substrates in vitro. For complete details on the use and execution of this protocol, please refer to Hoekstra and Biggar (2021).


Assuntos
Histona Desmetilases com o Domínio Jumonji , Lisina , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Lisina/química , Metilação
7.
Can J Econ ; 55(Suppl 1): 540-580, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38607868

RESUMO

We outline a macro-pandemic model where individuals can select into working from home or in the market. Market work increases the risk of infection. Occupations differ in the ease of substitution between market and home work and in the risk of infection. We examine the evolution of a pandemic in the model as well as its macroeconomic and distributional consequences. The model is calibrated to British Columbian data to examine the implications of shutting down different industries by linking industries to occupations. We find that endogenous choice to self-isolate is key: it reduces the peak weekly infection rate by two percentage points but reduces the trough consumption level by four percentage points, even without policy-mandated lockdowns. The model also produces widening consumption inequality, a fact that has characterized COVID-19.


Les pandémies envisagées à travers le prisme des professions. Nous décrivons un modèle de macro­pandémie où les individus peuvent choisir de travailler à domicile ou sur le marché. Le travail sur le marché augmente le risque d'infection. Les professions diffèrent par la facilité de substitution entre le marché du travail et le travail à domicile, et par le risque d'infection. Nous examinons l'évolution d'une pandémie dans le modèle ainsi que ses conséquences macroéconomiques et distributionnelles. Le modèle est calibré sur les données de la Colombie­Britannique pour examiner les implications de la fermeture de différentes industries en reliant les industries aux professions. Nous constatons que le choix endogène de s'auto­isoler est essentiel : il réduit le taux d'infection hebdomadaire maximal de deux points de pourcentage, mais réduit le niveau de consommation minimal de quatre points de pourcentage, même sans les verrouillages imposés par la politique. Le modèle produit également une inégalité de consommation croissante, un fait qui a caractérisé le COVID­19.

8.
PeerJ ; 9: e11117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868814

RESUMO

BACKGROUND: Understanding the disease pathogenesis of the novel coronavirus, denoted SARS-CoV-2, is critical to the development of anti-SARS-CoV-2 therapeutics. The global propagation of the viral disease, denoted COVID-19 ("coronavirus disease 2019"), has unified the scientific community in searching for possible inhibitory small molecules or polypeptides. A holistic understanding of the SARS-CoV-2 vs. human inter-species interactome promises to identify putative protein-protein interactions (PPI) that may be considered targets for the development of inhibitory therapeutics. METHODS: We leverage two state-of-the-art, sequence-based PPI predictors (PIPE4 & SPRINT) capable of generating the comprehensive SARS-CoV-2 vs. human interactome, comprising approximately 285,000 pairwise predictions. Three prediction schemas (all, proximal, RP-PPI) are leveraged to obtain our highest-confidence subset of PPIs and human proteins predicted to interact with each of the 14 SARS-CoV-2 proteins considered in this study. Notably, the use of the Reciprocal Perspective (RP) framework demonstrates improved predictive performance in multiple cross-validation experiments. RESULTS: The all schema identified 279 high-confidence putative interactions involving 225 human proteins, the proximal schema identified 129 high-confidence putative interactions involving 126 human proteins, and the RP-PPI schema identified 539 high-confidence putative interactions involving 494 human proteins. The intersection of the three sets of predictions comprise the seven highest-confidence PPIs. Notably, the Spike-ACE2 interaction was the highest ranked for both the PIPE4 and SPRINT predictors with the all and proximal schemas, corroborating existing evidence for this PPI. Several other predicted PPIs are biologically relevant within the context of the original SARS-CoV virus. Furthermore, the PIPE-Sites algorithm was used to identify the putative subsequence that might mediate each interaction and thereby inform the design of inhibitory polypeptides intended to disrupt the corresponding host-pathogen interactions. CONCLUSION: We publicly released the comprehensive sets of PPI predictions and their corresponding PIPE-Sites landscapes in the following DataVerse repository: https://www.doi.org/10.5683/SP2/JZ77XA. The information provided represents theoretical modeling only and caution should be exercised in its use. It is intended as a resource for the scientific community at large in furthering our understanding of SARS-CoV-2.

9.
Front Genet ; 11: 579636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088284

RESUMO

Oxygen sensing is inherent among most animal lifeforms and is critical for organism survival. Oxygen sensing mechanisms collectively trigger cellular and physiological responses that enable adaption to a reduction in ideal oxygen levels. The major mechanism by which oxygen-responsive changes in the transcriptome occur are mediated through the hypoxia-inducible factor (HIF) pathway. Upon reduced oxygen conditions, HIF activates hypoxia-responsive gene expression programs. However, under normal oxygen conditions, the activity of HIF is regularly suppressed by cellular oxygen sensors; prolyl-4 and asparaginyl hydroxylases. Recently, these oxygen sensors have also been found to suppress the function of two lysine methyltransferases, G9a and G9a-like protein (GLP). In this manner, the methyltransferase activity of G9a and GLP are hypoxia-inducible and thus present a new avenue of low-oxygen signaling. Furthermore, G9a and GLP elicit lysine methylation on a wide variety of non-histone proteins, many of which are known to be regulated by hypoxia. In this article we aim to review the effects of oxygen on G9a and GLP function, non-histone methylation events inflicted by these methyltransferases, and the clinical relevance of these enzymes in cancer.

10.
Cell Rep ; 32(2): 107896, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668242

RESUMO

Protein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the proteome level. We develop MethylSight, a program that predicts Kme events solely on the physicochemical properties of residues surrounding the putative methylation sites, which then requires validation by targeted MS. Using this approach, we identify 70 new histone Kme marks with a 90% validation rate. H2BK43me2, which undergoes dynamic changes during stem cell differentiation, is found to be a substrate of KDM5b. Furthermore, MethylSight predicts that Lys methylation is a prevalent post-translational modification in the human proteome. Our work provides a useful resource for guiding systematic exploration of the role of Lys methylation in human health and disease.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Algoritmos , Sequência de Aminoácidos , Animais , Diferenciação Celular , Desmetilação , Feminino , Histonas/química , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Metilação , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Neurônios/citologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Software , Especificidade por Substrato
11.
Nucleic Acids Res ; 48(6): 2897-2911, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31960028

RESUMO

The Nrd1-Nab3-Sen1 (NNS) complex integrates molecular cues to direct termination of noncoding transcription in budding yeast. NNS is positively regulated by histone methylation as well as through Nrd1 binding to the initiating form of RNA PolII. These cues collaborate with Nrd1 and Nab3 binding to target RNA sequences in nascent transcripts through their RRM RNA recognition motifs. In this study, we identify nine lysine residues distributed amongst Nrd1, Nab3 and Sen1 that are methylated, suggesting novel molecular inputs for NNS regulation. We identify mono-methylation of one these residues (Nab3-K363me1) as being partly dependent on the H3K4 methyltransferase, Set1, a known regulator of NNS function. Moreover, the accumulation of Nab3-K363me1 is essentially abolished in strains lacking SET3, a SET domain containing protein that is positively regulated by H3K4 methylation. Nab3-K363 resides within its RRM and physically contacts target RNA. Mutation of Nab3-K363 to arginine (Nab3-K363R) decreases RNA binding of the Nab3 RRM in vitro and causes transcription termination defects and slow growth. These findings identify SET3 as a potential contextual regulator of Nab3 function through its role in methylation of Nab3-K363. Consistent with this hypothesis, we report that SET3 exhibits genetic activation of NAB3 that is observed in a sensitized context.


Assuntos
Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Metilação , Ligação Proteica , Relação Estrutura-Atividade
12.
Curr Protein Pept Sci ; 21(7): 642-654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889485

RESUMO

Cellular responses to hypoxia (low oxygen) are governed by oxygen sensitive signaling pathways. Such pathways, in part, are controlled by enzymes with oxygen-dependent catalytic activity, of which the role of prolyl 4-hydroxylases has been widely reviewed. These enzymes inhibit hypoxic response by inducing the oxygen-dependent degradation of hypoxia-inducible factor 1α, the master regulator of the transcriptional hypoxic response. Jumonji C domain-containing lysine demethylases are similar enzymes which share the same oxygen-dependent catalytic mechanism as prolyl 4- hydroxylases. Traditionally, the role of lysine demethylases has been studied in relation to demethylation activity against histone substrates, however, within the past decade an increasing number of nonhistone protein targets have been revealed, some of which have a key role in survival in the hypoxic tumor microenvironment. Within this review, we highlight the involvement of methyllysine in the hypoxic response with a focus on the HIF signaling pathway, the regulation of demethylase activity by oxygen, and provide insights into notable areas of future hypoxic demethylase research.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/enzimologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Prolil Hidroxilases/metabolismo , Processamento de Proteína Pós-Traducional , Biocatálise , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histona Desmetilases/genética , Histonas/genética , Humanos , Hipóxia/genética , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Histona Desmetilases com o Domínio Jumonji/genética , Cinética , Lisina/metabolismo , Metilação/efeitos dos fármacos , Oxigênio/metabolismo , Oxigênio/farmacologia , Prolil Hidroxilases/genética , Transdução de Sinais
13.
Sci Rep ; 9(1): 13923, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558752

RESUMO

The incorporation of 2,2,2-trichloroethanol in polyacrylamide gels allows for fluorescent visualization of proteins following electrophoresis. Ultraviolet-light exposure, in the presence of this trichlorinated compound, results in a covalent modification of the tryptophan indole ring that shifts the fluorescent emission into the visible range. Based on this principle, we used 2,2,2-trichloroethanol to develop a microplate format protein quantification assay based on the fluorescent signal generated by modified proteins. We also demonstrated a specific fluorescent emission of 2,2,2-trichloroethanol-labeled protein at 450 nm, with a 310 nm excitation, resulting from modification of both tryptophan and tyrosine residues. Following optimization, this protein quantification assay displayed superior sensitivity when compared to UV absorbance at 280 nm (A280), and enabled quantification beyond the linear range permitted by the Bradford method. This 100 µL assay displayed a sensitivity of 10.5 µg in a range up to at least 200 µg. Furthermore, we extended the utility of this method through the development of a 20 µL low-volume assay, with a sensitivity of 8.7 µg tested up to 100 µg, which enabled visualization of proteins following SDS-PAGE. Collectively, these results demonstrate the utility of 2,2,2-trichloroethanol-based protein quantification and demonstrates the protein visualization in polyacrylamide gels based on 2,2,2-trichloroethanol-labeling pre-electrophoresis.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Etilenocloroidrina/análogos & derivados , Proteômica/métodos , Raios Ultravioleta , Absorção de Radiação , Etilenocloroidrina/química , Proteínas/química , Triptofano/química , Tirosina/química
14.
Korean J Pain ; 29(4): 239-248, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27738502

RESUMO

BACKGROUND: The present study was undertaken to evaluate the incidence of chronic persistent post-surgical pain (CPPP) and the role of signal transduction genes in patients undergoing staging laparotomy for carcinoma ovary. METHODS: The present observational study was undertaken following institutional ethical committee approval and informed consent from all the participants. A total 21 patients of ASA grade I to III with age 20-70 years, scheduled for elective staging laparotomy for carcinoma ovary were included. Patients were excluded if had other causes of pain, cognitive dysfunction or chronic neurological disorders. Statistical analysis of pool data was done using SPSS version-17. For various scales like GPE, PDQ, NPSI, the visual analogue scale (VAS), global perceived effect (GPE), the pain DETECT questionnaire (PDQ), and neuropathic pain symptoms inventory (NPSI), one factor repaeted measure ANOVA applied with simple contrast with baseline as on post-operative day 1 (considered as reference and compared with subsequent time-interval), and the P values were adjusted according to "Bonferroni adjustments". In patients with CPPP, the Δct values of mRNA expressions of genes at the end of postoperative day 90 were compared with the baseline control values by one factor repeated ANOVA. P value < 0.005 significant. RESULTS: The present study demonstrates 38.1% (8 out of 21 patients) incidence of CPPP. The functional status and quality of life as were observed to be significantly diminished in all patients with chronic pain. An up-regulation in the mRNA expression of signal transduction and a positive correlation was noted between the mRNA expression of signal transduction genes and VAS score in all patients with CPPP at the end of postoperative day 90. CONCLUSIONS: The reported incidence of CPPP in patients with carcinoma ovary was 38.1%. An up-regulation and positive correlation between mRNA expression of signal transduction genes and VAS score depicts its potential role in the pathogenesis of CPPP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA