Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 15(2): e20211, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35484973

RESUMO

Field pennycress (Thlaspi arvense L.) is a new winter annual cash cover crop with high oil content and seed yield, excellent winter hardiness, early maturation, and resistance to most pests and diseases. It provides living cover on fallow croplands between summer seasons, and in doing so reduces nutrient leaching into water sources, mitigates soil erosion, and suppresses weed growth. The first ever genome-wide association study (GWAS) was conducted on a pennycress diversity panel to identify marker trait associations with important seed size and composition related traits. The entire population was phenotyped in three total environments over 2 yr, and seed area, length, width, thousand grain weight, total oil, and total protein were measured post-harvest with specialized high-throughput imaging and near-infrared spectroscopy. Basic unbiased linear prediction values were calculated for each trait. Seed size traits tended to have higher entry mean reliabilities (0.76-0.79) compared with oil content (0.51) and protein content (0.37). Genotyping-by-sequencing identified 33,606 high quality genome-wide single nucleotide polymorphism (SNPs) that were coupled with phenotypic data to perform GWAS for seed area, length, width, thousand grain weight, total oil, and total protein content. Fifty-nine total marker-trait associations were identified revealing genomic regions controlling each trait. The significant SNPs explained 0.06-0.18% of the total variance for that trait in our population. A list of candidate genes was identified based on their functional annotations and characterization in other species. Our results confirm that GWAS is an efficient strategy to identify significant marker-trait associations that can be incorporated into marker-assisted selection pipelines to accelerate pennycress breeding progress.


Field pennycress is an excellent winter annual oilseed that can serve as a cash cover crop. Genotyping-by-sequencing is an effective strategy to genotype pennycress affordably for high-quality genome-wide single nucleotide polymorphisms. First-ever mapping study in a field pennycress association mapping population was conducted. GWAS identified 59 significant marker-trait associations for important quantitative traits. Seed size traits had a higher reliability estimate compared with seed composition traits.


Assuntos
Estudo de Associação Genômica Ampla , Thlaspi , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Sementes/genética , Sementes/metabolismo , Thlaspi/genética , Thlaspi/metabolismo
2.
Plant Biotechnol J ; 20(5): 944-963, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990041

RESUMO

Thlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae. Here, we present a chromosome-level genome assembly of var. MN106-Ref with improved gene annotation and use it to investigate gene structure differences between two accessions (MN108 and Spring32-10) that are highly amenable to genetic transformation. We describe non-coding RNAs, pseudogenes and transposable elements, and highlight tissue-specific expression and methylation patterns. Resequencing of forty wild accessions provided insights into genome-wide genetic variation, and QTL regions were identified for a seedling colour phenotype. Altogether, these data will serve as a tool for pennycress improvement in general and for translational research across the Brassicaceae.


Assuntos
Thlaspi , Cromossomos , Ecossistema , Genoma de Planta/genética , Anotação de Sequência Molecular , Thlaspi/genética , Pesquisa Translacional Biomédica
3.
Mol Phylogenet Evol ; 164: 107272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34332035

RESUMO

Cyanobacteria are emerging as a potential source of novel, beneficial bioactive compounds. However, some cyanobacteria species can harm water quality and public health through the production of toxins. Therefore, surveying the occurrence and generating genomic resources of cyanobacteria producing harmful compounds could help develop the control methods necessary to manage their growth and limit the release contaminants into the water bodies. Here, we describe a novel strain, Pseudanabaena punensis isolated from the open ends of pipelines supplying freshwater. This isolate was characterized morphologically, biochemically and by whole-genome sequence analysis. We also provide genomic information for P. punensis to help understand and highlight the features unique to this isolate. Morphological and genetic (analysis using 16S rRNA and rbcL genes) data were used to assign this novel strain to phylogenetic and taxonomic groups. The isolate was identified as a filamentous and non-heterocystous cyanobacteria. Based on morphological and 16S rRNA phylogeny, this isolate shares characteristics with the Pseudanabaenaceae family, but remains distinct from well-characterized species suggesting its polyphyletic assemblage. The whole-genome sequence analysis suggests greater genomic and phenotypic plasticity. Genome-wide sequence and comparative genomic analyses, comparing against several closely related species, revealed diverse and important genes associated with synthesizing bioactive compounds, multi-drug resistance pathway, heavy metal resistance, and virulence factors. This isolate also produces several important fatty acids with potential industrial applications. The observations described in this study emphasize both industrial applications and risks associated with the freshwater contamination, and therefore genomic resources provided in this study offer an opportunity for further investigations.


Assuntos
Cianobactérias , Cianobactérias/genética , Água Doce/microbiologia , Genômica , Filogenia , RNA Ribossômico 16S/química
4.
Emerg Top Life Sci ; 5(2): 325-335, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33755137

RESUMO

Growing concerns over food insecurity and ecosystems health related to population growth and climate change have challenged scientists to develop new crops, employing revolutionary technologies in combination with traditional methods. In this review, we discuss the domestication of the oilseed-producing cover crop pennycress, which along with the development of other new crops and improvements to farming practices can provide sustainable solutions to address malnutrition and environmental impacts of production agriculture. We highlight some of the new technologies such as bioinformatics-enabled next-generation sequencing and CRISPR genome editing in combination with traditional mutation breeding that has accelerated pennycress development as a new crop and a potential model system. Furthermore, we provide a brief overview of the technologies that can be integrated for improving pennycress and other crops and the status of pennycress development using these technologies.


Assuntos
Thlaspi , Agricultura , Produtos Agrícolas/genética , Ecossistema , Melhoramento Vegetal
5.
Genes (Basel) ; 11(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080972

RESUMO

The use of molecular markers in plant breeding has become a routine practice, but the cost per accession can be a hindrance to the routine use of Quantitative Trait Loci (QTL) identification in breeding programs. In this study, we demonstrate the use of targeted re-sequencing as a proof of concept of a cost-effective approach to retrieve highly informative allele information, as well as develop a bioinformatics strategy to capture the genome-specific information of a polyploid species. SNPs were identified from alignment of raw transcriptome reads (2 × 50 bp) to a synthetic tetraploid genome using BWA followed by a GATK pipeline. Regions containing high polymorphic SNPs in both A genome and B genomes were selected as targets for the resequencing study. Targets were amplified using multiplex PCR followed by sequencing on an Illumina HiSeq. Eighty-one percent of the SNP calls in diploids and 68% of the SNP calls in tetraploids were confirmed. These results were also confirmed by KASP validation. Based on this study, we find that targeted resequencing technologies have potential for obtaining maximum allele information in allopolyploids at reduced cost.


Assuntos
Arachis/genética , Cromossomos de Plantas/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tetraploidia , Alelos , Biologia Computacional , Melhoramento Vegetal
6.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661847

RESUMO

Grain number per panicle is an important component of grain yield in sorghum (Sorghum bicolor (L.)) and other cereal crops. Previously, we reported that mutations in multi-seeded 1 (MSD1) and MSD2 genes result in a two-fold increase in grain number per panicle due to the restoration of the fertility of the pedicellate spikelets, which invariably abort in natural sorghum accessions. Here, we report the identification of another gene, MSD3, which is also involved in the regulation of grain numbers in sorghum. Four bulked F2 populations from crosses between BTx623 and each of the independent msd mutants p6, p14, p21, and p24 were sequenced to 20× coverage of the whole genome on a HiSeq 2000 system. Bioinformatic analyses of the sequence data showed that one gene, Sorbi_3001G407600, harbored homozygous mutations in all four populations. This gene encodes a plastidial ω-3 fatty acid desaturase that catalyzes the conversion of linoleic acid (18:2) to linolenic acid (18:3), a substrate for jasmonic acid (JA) biosynthesis. The msd3 mutants had reduced levels of linolenic acid in both leaves and developing panicles that in turn decreased the levels of JA. Furthermore, the msd3 panicle phenotype was reversed by treatment with methyl-JA (MeJA). Our characterization of MSD1, MSD2, and now MSD3 demonstrates that JA-regulated processes are critical to the msd phenotype. The identification of the MSD3 gene reveals a new target that could be manipulated to increase grain number per panicle in sorghum, and potentially other cereal crops, through the genomic editing of MSD3 functional orthologs.


Assuntos
Produtos Agrícolas/enzimologia , Ciclopentanos/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Oxilipinas/metabolismo , Sorghum/enzimologia , Alelos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Ciclopentanos/farmacologia , Grão Comestível/efeitos dos fármacos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Mutação , Oxilipinas/farmacologia , Fenótipo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sorghum/genética , Sorghum/metabolismo , Ácido alfa-Linolênico/biossíntese , Ácido alfa-Linolênico/química
7.
G3 (Bethesda) ; 9(12): 4045-4057, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31611346

RESUMO

Dissecting the genetic architecture of stress tolerance in crops is critical to understand and improve adaptation. In temperate climates, early planting of chilling-tolerant varieties could provide longer growing seasons and drought escape, but chilling tolerance (<15°) is generally lacking in tropical-origin crops. Here we developed a nested association mapping (NAM) population to dissect the genetic architecture of early-season chilling tolerance in the tropical-origin cereal sorghum (Sorghum bicolor [L.] Moench). The NAM resource, developed from reference line BTx623 and three chilling-tolerant Chinese lines, is comprised of 771 recombinant inbred lines genotyped by sequencing at 43,320 single nucleotide polymorphisms. We phenotyped the NAM population for emergence, seedling vigor, and agronomic traits (>75,000 data points from ∼16,000 plots) in multi-environment field trials in Kansas under natural chilling stress (sown 30-45 days early) and normal growing conditions. Joint linkage mapping with early-planted field phenotypes revealed an oligogenic architecture, with 5-10 chilling tolerance loci explaining 20-41% of variation. Surprisingly, several of the major chilling tolerance loci co-localize precisely with the classical grain tannin (Tan1 and Tan2) and dwarfing genes (Dw1 and Dw3) that were under strong directional selection in the US during the 20th century. These findings suggest that chilling sensitivity was inadvertently selected due to coinheritance with desired nontannin and dwarfing alleles. The characterization of genetic architecture with NAM reveals why past chilling tolerance breeding was stymied and provides a path for genomics-enabled breeding of chilling tolerance.


Assuntos
Adaptação Fisiológica/genética , Mapeamento Cromossômico , Temperatura Baixa , Sorghum/genética , Sorghum/fisiologia , Evolução Biológica , Padrões de Herança/genética , Fenótipo , Característica Quantitativa Herdável , Estações do Ano , Sementes/metabolismo , Taninos/metabolismo
8.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597271

RESUMO

As in other cereal crops, the panicles of sorghum (Sorghum bicolor (L.) Moench) comprise two types of floral spikelets (grass flowers). Only sessile spikelets (SSs) are capable of producing viable grains, whereas pedicellate spikelets (PSs) cease development after initiation and eventually abort. Consequently, grain number per panicle (GNP) is lower than the total number of flowers produced per panicle. The mechanism underlying this differential fertility is not well understood. To investigate this issue, we isolated a series of ethyl methane sulfonate (EMS)-induced multiseeded (msd) mutants that result in full spikelet fertility, effectively doubling GNP. Previously, we showed that MSD1 is a TCP (Teosinte branched/Cycloidea/PCF) transcription factor that regulates jasmonic acid (JA) biosynthesis, and ultimately floral sex organ development. Here, we show that MSD2 encodes a lipoxygenase (LOX) that catalyzes the first committed step of JA biosynthesis. Further, we demonstrate that MSD1 binds to the promoters of MSD2 and other JA pathway genes. Together, these results show that a JA-induced module regulates sorghum panicle development and spikelet fertility. The findings advance our understanding of inflorescence development and could lead to new strategies for increasing GNP and grain yield in sorghum and other cereal crops.


Assuntos
Ciclopentanos/metabolismo , Fertilidade , Oxilipinas/metabolismo , Desenvolvimento Vegetal , Sorghum/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Grão Comestível , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Sorghum/classificação , Fatores de Transcrição/metabolismo
9.
Plant Physiol ; 180(4): 2240-2253, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221729

RESUMO

Cellulose synthesis is precisely regulated by internal and external cues, and emerging evidence suggests that light regulates cellulose biosynthesis through specific light receptors. Recently, the blue light receptor CRYPTOCHROME 1 (CRY1) was shown to positively regulate secondary cell wall biosynthesis in Arabidopsis (Arabidopsis thaliana). Here, we characterize the role of FLAVIN-BINDING KELCH REPEAT, F-BOX 1 (FKF1), another blue light receptor and well-known photoperiodic flowering time regulator, in cellulose biosynthesis. A phenotype suppression screen using a cellulose deficient mutant cesa1aegeus,cesa3ixr1-2 (c1,c3), which carries nonlethal point mutations in CELLULOSE SYNTHASE A 1 (CESA1) and CESA3, resulted in identification of the phenotype-restoring large leaf (llf) mutant. Next-generation mapping using the whole genome resequencing method identified the llf locus as FKF1 FKF1 was confirmed as the causal gene through observation of the llf phenotype in an independent triple mutant c1,c3,fkf1-t carrying a FKF1 T-DNA insertion mutant. Moreover, overexpression of FKF1 in llf plants restored the c1,c3 phenotype. The fkf1 mutants showed significant increases in cellulose content and CESA gene expression compared with that in wild-type Columbia-0 plants, suggesting a negative role of FKF1 in cellulose biosynthesis. Using genetic, molecular, and phenocopy and biochemical evidence, we have firmly established the role of FKF1 in regulation of cellulose biosynthesis. In addition, CESA expression analysis showed that diurnal expression patterns of CESAs are FKF1 independent, whereas their circadian expression patterns are FKF1 dependent. Overall, our work establishes a role of FKF1 in the regulation of cell wall biosynthesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Fotoperíodo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Criptocromos/genética , Criptocromos/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Mutação Puntual/genética
10.
Methods Mol Biol ; 1931: 75-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30652284

RESUMO

Marker assisted selection (MAS), an advance tool in plant breeding that allows accurate and efficient introgression of important agronomic trait(s) from a germplasm source to desired elite lines, has been applied to sorghum recently. Here, we report the methods for the deployment of MAS for trait introgression using endpoint genotyping technology for single nucleotide polymorphism (SNP)/insertion deletion (InDel) coupled with an application of KASP (Kompetitive Allele Specific Polymerase Chain Reaction [PCR]) chemistry allowing for the selection of parents for generational advancement without going through the laborious and time consuming phenotypic selection and additional generations for selection of desired individuals. This MAS-SNP marker assisted backcrossing scheme can be applied to accurately select heterozygotes for use as an allele donor parent in each backcross generation, thus expediting the backcrossing scheme and resulting in time savings of 3 years compared to conventional methods of introgression practiced in sorghum breeding and improvement.


Assuntos
Marcadores Genéticos/genética , Mutação INDEL/genética , Polimorfismo de Nucleotídeo Único/genética , Sorghum/genética , Alelos , Edição de Genes/métodos , Genótipo , Fenótipo , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética
11.
Plant Biotechnol J ; 17(4): 776-788, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30230695

RESUMO

Thlapsi arvense L. (pennycress) is being developed as a profitable oilseed cover crop for the winter fallow period throughout the temperate regions of the world, controlling soil erosion and nutrients run-off on otherwise barren farmland. We demonstrate that pennycress can serve as a user-friendly model system akin to Arabidopsis that is well-suited for both laboratory and field experimentation. We sequenced the diploid genome of the spring-type Spring 32-10 inbred line (1C DNA content of 539 Mb; 2n = 14), identifying variation that may explain phenotypic differences with winter-type pennycress, as well as predominantly a one-to-one correspondence with Arabidopsis genes, which makes translational research straightforward. We developed an Agrobacterium-mediated floral dip transformation method (0.5% transformation efficiency) and introduced CRISPR-Cas9 constructs to produce indel mutations in the putative FATTY ACID ELONGATION1 (FAE1) gene, thereby abolishing erucic acid production and creating an edible seed oil comparable to that of canola. We also stably transformed pennycress with the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene, producing low-viscosity acetyl-triacylglycerol-containing seed oil suitable as a diesel-engine drop-in fuel. Adoption of pennycress as a model system will accelerate oilseed-crop translational research and facilitate pennycress' rapid domestication to meet the growing sustainable food and fuel demands.


Assuntos
Arabidopsis/genética , Diacilglicerol O-Aciltransferase/metabolismo , Euonymus/enzimologia , Genoma de Planta/genética , Óleos de Plantas/metabolismo , Thlaspi/genética , Produtos Agrícolas , Diacilglicerol O-Aciltransferase/genética , Ácidos Erúcicos/metabolismo , Euonymus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Thlaspi/metabolismo
12.
Plant J ; 96(6): 1093-1105, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30394623

RESUMO

Thlaspi arvense (pennycress) has the potential for domestication as a new oilseed crop. Information from an extensive body of research on the related plant species Arabidopsis can be used to greatly speed this process. Genome-scale comparisons in this paper documented that pennycress and Arabidopsis share similar gene duplication. This finding led to the hypothesis that it should be possible to isolate Arabidopsis-like mutants in pennycress. This proved to be true, as forward genetic screens identified floral and vegetative pennycress mutants that were similar to mutants found in Arabidopsis. Extending this approach, it was shown that most of the pennycress genes responsible for the formation of oxidized tannins could be rapidly identified. The causative mutations in the pennycress mutants could be identified either by PCR amplification of candidate genes or through whole-genome sequencing (WGS) analysis. In all, WGS was used to characterize 95 ethyl methane sulfonate mutants, which revealed a mutation rate of 4.09 mutations per megabase. A sufficient number of non-synonymous mutations were identified to create a mutant gene index that could be used for reverse genetic approaches to identify pennycress mutants of interest. As proof of concept, a Ta-max3-like dwarf mutant and Ta-kcs5/cer60-like wax mutants deficient in the biosynthesis of long chain fatty acids were identified. Overall, these studies demonstrate that translational genomics can be used to promote the domestication of pennycress. Furthermore, the ease with which important findings could be made in pennycress makes this species a new potential model plant.


Assuntos
Arabidopsis/genética , Genes de Plantas/genética , Modelos Genéticos , Genética Reversa , Thlaspi/genética , Genes de Plantas/fisiologia , Genoma de Planta/genética , Genômica , Mutação/genética , Genética Reversa/métodos
13.
Mol Genet Genomics ; 293(6): 1477-1491, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30069598

RESUMO

KEY MESSAGE: QTL mapping of important architectural traits was successfully applied to an A-genome diploid population using gene-specific variations. Peanut wild species are an important source of resistance to biotic and possibly abiotic stress; because these species differ from the cultigen in many traits, we have undertaken to identify QTLs for several plant architecture-related traits. In this study, we took recently identified SNPs, converted them into markers, and identified QTLs for architectural traits. SNPs from RNASeq data distinguishing two parents, A. duranensis (KSSc38901) and A. cardenasii (GKP10017), of a mapping population were identified using three references-A. duranensis V14167 genome sequence, and transcriptome sequences of A. duranensis KSSc38901 and OLin. More than 49,000 SNPs differentiated the parents, and 87.9% of the 190 SNP calls tested were validated. SNPs were then genotyped on 91 F2 lines using KASP chemistry on a Roche LightCycler 480 and a Fluidigm Biomark HD, and using SNPType chemistry on the Fluidigm Biomark HD. A linkage map was constructed having ten linkage groups, with 144 loci spanning a total map distance of 1040 cM. Comparison of the A-genome map to the A. duranensis genome sequence revealed a high degree of synteny. QTL analysis was also performed on the mapping population for important architectural traits. Fifteen definitive and 16 putative QTLs for petiole length, leaflet length and width, leaflet area, leaflet length/width ratio, main stem height, presence of flowers on the main stem, and seed mass were identified. Results demonstrate that SNPs identified from transcriptome sequencing could be converted to KASP or SNPType markers with a high success rate, and used to identify alleles with significant phenotypic effects, These could serve as information useful for introgression of alleles into cultivated peanut from wild species and have the potential to allow breeders to more easily fix these alleles using a marker-assisted backcrossing approach.


Assuntos
Arachis/anatomia & histologia , Arachis/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Arachis/classificação , Arachis/crescimento & desenvolvimento , Mapeamento Cromossômico , Domesticação , Evolução Molecular , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Especificidade da Espécie
14.
Nat Commun ; 9(1): 822, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483511

RESUMO

Grain number per panicle (GNP) is a major determinant of grain yield in cereals. However, the mechanisms that regulate GNP remain unclear. To address this issue, we isolate a series of sorghum [Sorghum bicolor (L.) Moench] multiseeded (msd) mutants that can double GNP by increasing panicle size and altering floral development so that all spikelets are fertile and set grain. Through bulk segregant analysis by next-generation sequencing, we identify MSD1 as a TCP (Teosinte branched/Cycloidea/PCF) transcription factor. Whole-genome expression profiling reveals that jasmonic acid (JA) biosynthetic enzymes are transiently activated in pedicellate spikelets. Young msd1 panicles have 50% less JA than wild-type (WT) panicles, and application of exogenous JA can rescue the msd1 phenotype. Our results reveal a new mechanism for increasing GNP, with the potential to boost grain yield, and provide insight into the regulation of plant inflorescence architecture and development.


Assuntos
Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Inflorescência/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Sementes/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Grão Comestível , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Sorghum/genética , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724078

RESUMO

Heat stress reduces grain yield and quality worldwide. Enhancing heat tolerance of crops at all developmental stages is one of the essential strategies required for sustaining agricultural production especially as frequency of temperature extremes escalates in response to climate change. Although heat tolerance mechanisms have been studied extensively in model plant species, little is known about the genetic control underlying heat stress responses of crop plants at the vegetative stage under field conditions. To dissect the genetic basis of heat tolerance in sorghum [ (L.) Moench], we performed a genome-wide association study (GWAS) for traits responsive to heat stress at the vegetative stage in an association panel. Natural variation in leaf firing (LF) and leaf blotching (LB) were evaluated separately for 3 yr in experimental fields at three locations where sporadic heat waves occurred throughout the sorghum growing season. We identified nine single-nucleotide polymorphisms (SNPs) that were significantly associated with LF and five SNPs that were associated with LB. Candidate genes near the SNPs were investigated and 14 were directly linked to biological pathways involved in plant stress responses including heat stress response. The findings of this study provide new knowledge on the genetic control of leaf traits responsive to heat stress in sorghum, which could aid in elucidating the genetic and molecular mechanisms of vegetative stage heat tolerance in crops. The results also provide candidate markers for molecular breeding of enhanced heat tolerance in cereal and bioenergy crops.


Assuntos
Adaptação Fisiológica , Estudo de Associação Genômica Ampla , Temperatura Alta , Folhas de Planta/fisiologia , Sorghum/crescimento & desenvolvimento , Cromossomos de Plantas , Genótipo , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Sorghum/fisiologia , Estresse Fisiológico
16.
BMC Genomics ; 18(1): 409, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545396

RESUMO

BACKGROUND: The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson's drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. RESULTS: One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. CONCLUSIONS: The M. pruriens transcriptomic resources generated in this study provide foundational resources for gene discovery and development of molecular markers. Polymorphic SSRs identified can be used for genetic diversity, marker-trait analyses, and development of functional markers for crop improvement. The results of differential expression studies can be used to investigate genes involved in L-Dopa synthesis and other key metabolic pathways in M. pruriens.


Assuntos
Etiquetas de Sequências Expressas/metabolismo , Perfilação da Expressão Gênica , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Mucuna/genética , Mineração de Dados , Polimorfismo Genético , RNA Mensageiro/genética , Fatores de Transcrição/genética
17.
BMC Plant Biol ; 17(1): 12, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086798

RESUMO

BACKGROUND: Climate variability due to fluctuation in temperature is a worldwide concern that imperils crop production. The need to understand how the germplasm variation in major crops can be utilized to aid in discovering and developing breeding lines that can withstand and adapt to temperature fluctuations is more necessary than ever. Here, we analyzed the genetic variation associated with responses to thermal stresses in a sorghum association panel (SAP) representing major races and working groups to identify single nucleotide polymorphisms (SNPs) that are associated with resilience to temperature stress in a major cereal crop. RESULTS: The SAP exhibited extensive variation for seedling traits under cold and heat stress. Genome-wide analyses identified 30 SNPs that were strongly associated with traits measured at seedling stage under cold stress and tagged genes that act as regulators of anthocyanin expression and soluble carbohydrate metabolism. Meanwhile, 12 SNPs were significantly associated with seedling traits under heat stress and these SNPs tagged genes that function in sugar metabolism, and ion transport pathways. Evaluation of co-expression networks for genes near the significantly associated SNPs indicated complex gene interactions for cold and heat stresses in sorghum. We focused and validated the expression of four genes in the network of Sb06g025040, a basic-helix-loop-helix (bHLH) transcription factor that was proposed to be involved in purple color pigmentation of leaf, and observed that genes in this network were upregulated during cold stress in a moderately tolerant line as compared to the more sensitive line. CONCLUSION: This study facilitated the tagging of genome regions associated with variation in seedling traits of sorghum under cold and heat stress. These findings show the potential of genotype information for development of temperature resilient sorghum cultivars and further characterization of genes and their networks responsible for adaptation to thermal stresses. Knowledge on the gene networks from this research can be extended to the other cereal crops to better understand the genetic basis of resilience to temperature fluctuations during plant developmental stages.


Assuntos
Resposta ao Choque Térmico , Sementes/fisiologia , Sorghum/genética , Sorghum/fisiologia , Redes Reguladoras de Genes , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Plântula/genética , Sementes/genética , Termotolerância/genética
18.
G3 (Bethesda) ; 6(12): 3825-3836, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27729436

RESUMO

To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32%) were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection.


Assuntos
Arachis/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Alelos , Mapeamento Cromossômico , Biologia Computacional/métodos , Evolução Molecular , Genética Populacional , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
19.
Sci Rep ; 6: 29070, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27356763

RESUMO

Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean.


Assuntos
Fabaceae/genética , Repetições de Microssatélites/genética , Transcriptoma/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Inibidor da Tripsina de Soja de Kunitz/genética
20.
Plant Cell ; 28(7): 1551-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27354556

RESUMO

Sorghum (Sorghum bicolor) is a versatile C4 crop and a model for research in family Poaceae. High-quality genome sequence is available for the elite inbred line BTx623, but functional validation of genes remains challenging due to the limited genomic and germplasm resources available for comprehensive analysis of induced mutations. In this study, we generated 6400 pedigreed M4 mutant pools from EMS-mutagenized BTx623 seeds through single-seed descent. Whole-genome sequencing of 256 phenotyped mutant lines revealed >1.8 million canonical EMS-induced mutations, affecting >95% of genes in the sorghum genome. The vast majority (97.5%) of the induced mutations were distinct from natural variations. To demonstrate the utility of the sequenced sorghum mutant resource, we performed reverse genetics to identify eight genes potentially affecting drought tolerance, three of which had allelic mutations and two of which exhibited exact cosegregation with the phenotype of interest. Our results establish that a large-scale resource of sequenced pedigreed mutants provides an efficient platform for functional validation of genes in sorghum, thereby accelerating sorghum breeding. Moreover, findings made in sorghum could be readily translated to other members of the Poaceae via integrated genomics approaches.


Assuntos
Sorghum/genética , Genoma de Planta/genética , Genótipo , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Poaceae/genética , Poaceae/fisiologia , Sorghum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA