Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Future Med Chem ; : 1-19, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363626

RESUMO

Aim: We designed and synthesized a series of compounds with a 3,5-disubstituted pyridine moiety and evaluated them against Mycobacterium tuberculosis (Mtb) and drug-resistant Mtb clinical isolates.Methodology: A library of 3,5-disubstituted pyridine was synthesized. The compounds were screened for activity against M. tuberculosis H37Rv. The optimal substitutions needed for the activity were identified through structure-activity relationship (SAR) studies.Results: From the screening studies, compounds 24 and 26 were identified as potent members of this series with Minimum Inhibitory Concentration (MIC) of 1.56 µg/ml against M. tuberculosis H37Rv. These compounds did not show any inhibition against a panel of ESKAPE pathogens at >50 µg/ml indicating their selective killing of M. tuberculosis H37Rv. Importantly, compound 24 showed a selectivity index of 54.64 against CHO-K1 and 78.26 against VERO cell lines, while compound 26 showed a selectivity index of 108.5 against CHO-K1 and 63.2 against VERO cell lines, respectively. Compound 24 formed a stable complex with the target protein DprE1 with predicted binding energy -8.73 kcal/mol and inhibited multidrug-resistant clinical isolate of M. tuberculosis at 6.25 µg/ml.Conclusion: This study identified the 3,5-disubstituted pyridine derivative 24 with potent antituberculosis activity and can be taken forward to generate new preclinical candidate.


[Box: see text].

2.
Sci Rep ; 14(1): 21573, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284874

RESUMO

Herbal medicines are important for ensuring sustainable development goals (SDGs) in healthcare, particularly in developing countries with high rates of antimicrobial resistance (AMR) and little access to medical facilities. Thymus vulgaris is a widely used herbal medicinal plant known for its secondary metabolites and antimicrobial properties. The present study involved a comprehensive examination of the isolation, characterization, and antibacterial activity of Thymus vulgaris obtained from Ethiopia. The aerial part of the plant Thymus vulgaris was successively extracted with hexane, chloroform, and methanol based on differences in polarity. Phytochemical screening tests conducted against hexane, chloroform and MeOH crude extracts indicated the presence of some secondary metabolites. Based on the thin-layer chromatography tests, the chloroform extract was subjected to column chromatography, yielding Tv-2 compounds, namely 5-isopropyl-2-methylphenol. The structures of the compounds were elucidated via spectroscopic methods (UV-Vis, FT-IR and NMR). We investigated the antibacterial properties of hexane crude extract, chloroform crude extract, MeOH crude extract, and isolated fractions derived from T. vulgaris against various bacterial strains. This study contributes to a better understanding of the bioactive components present in Thymus vulgaris crude extracts and their potential role in tackling microbial infections.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Extratos Vegetais , Thymus (Planta) , Thymus (Planta)/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Etiópia , Bactérias/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação
3.
RSC Med Chem ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39345711

RESUMO

In this work, a novel series of naphthalimide hydrazide derivatives were designed, synthesized and evaluated against a bacterial pathogen panel. Most of the compounds were found to exhibit potent antibacterial activity against carbapenem-resistant A. baumannii BAA 1605, with MIC ranging from 0.5 to 16 µg mL-1. Compounds 5b, 5c, 5d and 5e showed the most potent antibacterial activity, with an MIC range of 0.5-1 µg mL-1. These compounds were also found to be non-toxic to Vero cells with a high selectivity index. Further, they were active against 24 clinical isolates of MDR-AB with potent antibacterial activity. In addition, synergistic studies revealed that compound 5d exhibited synergism with FDA-approved drugs, as further validated through time-kill kinetic studies. These results highlight the potential of the synthesized compounds as promising leads for the development of novel and selective agents against carbapenem-resistant A. baumannii.

4.
J Med Chem ; 67(17): 15041-15060, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39213648

RESUMO

To date, the use of corannulene has been restricted in the area of material science, but its application in biomedical research has yet to be established due to its nonsolubility in an aqueous environment and synthetic infeasibility. Herein, we detail the development of a new family of highly curved π-conjugated corannulene-containing unnatural α-amino acid (CAA) derivatives to overcome this challenge. These CAAs have been extended as novel constituents for the synthesis of corannulene-containing water-soluble cationic peptides (CCPs), which display inhibitory activity against broad-spectrum pathogenic bacteria along with drug-resistant bacteria via a membrane-damaging mechanism. Importantly, several of the synthesized peptides were found to be appreciably nonhemolytic against hRBCs and noncytotoxic against mammalian 3T3 cells. In vivo efficacy studies of the potent and least cytotoxic peptide 6a demonstrated clearance of bacteria from the spleen, liver, lung, and blood of mice infected with S. aureus ATCC 25923.


Assuntos
Aminoácidos , Antibacterianos , Testes de Sensibilidade Microbiana , Solubilidade , Água , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Camundongos , Aminoácidos/química , Aminoácidos/farmacologia , Água/química , Humanos , Staphylococcus aureus/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Relação Estrutura-Atividade , Infecções Estafilocócicas/tratamento farmacológico
5.
Int J Biol Macromol ; 275(Pt 1): 133445, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945334

RESUMO

In bacteria, peptidyl-tRNA hydrolase (Pth, E.C. 3.1.1.29) is a ubiquitous and essential enzyme for preventing the accumulation of peptidyl-tRNA and sequestration of tRNA. Pth is an esterase that cleaves the ester bond between peptide and tRNA. Here, we present the crystal structure of Pth from Enterococcus faecium (EfPth) at a resolution of 1.92 Å. The two molecules in the asymmetric unit differ in the orientation of sidechain of N66, a conserved residue of the catalytic site. Enzymatic hydrolysis of substrate α-N-BODIPY-lysyl-tRNALys (BLT) by EfPth was characterized by Michaelis-Menten parameters KM 163.5 nM and Vmax 1.9 nM/s. Compounds having pyrrolinone scaffold were tested for inhibition of Pth and one compound, 1040-C, was found to have IC50 of 180 nM. Antimicrobial activity profiling was done for 1040-C. It exhibited equipotent activity against drug-susceptible and resistant S. aureus (MRSA and VRSA) and Enterococcus (VSE and VRE) with MICs 2-8 µg/mL. 1040-C synergized with gentamicin and the combination was effective against the gentamicin resistant S. aureus strain NRS-119. 1040-C was found to reduce biofilm mass of S. aureus to an extent similar to Vancomycin. In a murine model of infection, 1040-C was able to reduce bacterial load to an extent comparable to Vancomycin.


Assuntos
Hidrolases de Éster Carboxílico , Enterococcus faecium , Enterococcus faecium/enzimologia , Enterococcus faecium/efeitos dos fármacos , Animais , Camundongos , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Modelos Moleculares , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Domínio Catalítico , Hidrólise , Biofilmes/efeitos dos fármacos
6.
Biomed Pharmacother ; 176: 116810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823276

RESUMO

Globally, infections due to multi-drug resistant (MDR) Gram-negative bacterial (GNB) pathogens are on the rise, negatively impacting morbidity and mortality, necessitating urgent treatment alternatives. Herein, we report a detailed bio-evaluation of an ultrashort, cationic lipopeptide 'SVAP9I' that demonstrated potent antibiotic activity and acted as an adjuvant to potentiate existing antibiotic classes towards GNBs. Newly synthesized lipopeptides were screened against ESKAPE pathogens and cytotoxicity assays were performed to evaluate the selectivity index (SI). SVAP9I exhibited broad-spectrum antibacterial activity against critical MDR-GNB pathogens including members of Enterobacteriaceae (MIC 4-8 mg/L), with a favorable CC50 value of ≥100 mg/L and no detectable resistance even after 50th serial passage. It demonstrated fast concentration-dependent bactericidal action as determined via time-kill analysis and also retained full potency against polymyxin B-resistant E. coli, indicating distinct mode of action. SVAP9I targeted E. coli's outer and inner membranes by binding to LPS and phospholipids such as cardiolipin and phosphatidylglycerol. Membrane damage resulted in ROS generation, depleted intracellular ATP concentration and a concomitant increase in extracellular ATP. Checkerboard assays showed SVAP9I's synergism with narrow-spectrum antibiotics like vancomycin, fusidic acid and rifampicin, potentiating their efficacy against MDR-GNB pathogens, including carbapenem-resistant Acinetobacter baumannii (CRAB), a WHO critical priority pathogen. In a murine neutropenic thigh infection model, SVAP9I and rifampicin synergized to express excellent antibacterial efficacy against MDR-CRAB outcompeting polymyxin B. Taken together, SVAP9I's distinct membrane-targeting broad-spectrum action, lack of resistance and strong in vitro andin vivopotency in synergism with narrow spectrum antibiotics like rifampicin suggests its potential as a novel antibiotic adjuvant for the treatment of serious MDR-GNB infections.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Lipopeptídeos , Testes de Sensibilidade Microbiana , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Camundongos , Lipopeptídeos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Sinergismo Farmacológico , Feminino , Humanos , Adjuvantes Farmacêuticos/farmacologia
7.
Adv Healthc Mater ; 13(20): e2400378, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38621382

RESUMO

In the pursuit to combat stubborn bacterial infections, particularly those stemming from gram-positive bacteria, this study is an attempt to craft a precision-driven platform characterized by unparalleled selectivity, specificity, and synergistic antimicrobial mechanisms. Leveraging remarkable potential of metalloantibiotics in antimicrobial applications, herein, this work rationally designs, synthesizes, and characterizes a new library of Pyridine-2,6-dicarboxamide ligands and their corresponding transition metal Cu(II)/Zn(II) complexes. The lead compound L11 demonstrates robust antibacterial properties against Staphylococcus aureus (Minimum Inhibitory Concentration (MIC) = 2-16 µg mL-1), methicillin and vancomycin-resistant S. aureus (MIC = 2-4 µg mL-1) and exhibit superior antibacterial activity when compared to FDA-approved vancomycin, the drug of last resort. Additionally, the compound exhibits notable antimicrobial efficacy against resistant enterococcus strains (MIC = 2-8 µg mL-1). To unravel mechanistic profile, advanced imaging techniques including SEM and AFM are harnessed, collectively suggesting a mechanistic pathway involving cell wall disruption. Live/dead fluorescence studies further confirm efficacy of L11 and its complexes against S. aureus membranes. This translational exploration extends to a rat model, indicating promising in vivo therapeutic potential. Thus, this comprehensive research initiative has capabilities to transcends the confines of this laboratory, heralding a pivotal step toward combatting antibiotic-resistant pathogens and advancing the frontiers of metalloantibiotics-based therapy with a profound clinical implication.


Assuntos
Antibacterianos , Biofilmes , Cobre , Testes de Sensibilidade Microbiana , Piridinas , Staphylococcus aureus , Zinco , Biofilmes/efeitos dos fármacos , Animais , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Zinco/química , Zinco/farmacologia , Cobre/química , Cobre/farmacologia , Ratos , Piridinas/química , Piridinas/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Ligantes , Ratos Sprague-Dawley
8.
RSC Med Chem ; 15(4): 1381-1391, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665829

RESUMO

The emergence of antibiotic resistance to S. aureus and M. tuberculosis, particularly MRSA, VRSA, and drug-resistant tuberculosis, poses a serious threat to human health. Towards discovering new antibacterial agents, we designed and synthesized a series of new naphthalimide-thiourea derivatives and evaluated them against a panel of bacterial strains consisting of E. coli, S. aureus, K. pneumoniae, P. aeruginosa, A. baumannii and various mycobacterial pathogens. Compounds 4a, 4l, 4m, 4n, 4q, 9f, 9l, 13a, 13d, 13e, 17a, 17b, 17c, 17d, and 17e demonstrated potent antibacterial activity against S. aureus with MIC 0.03-8 µg mL-1. In addition, these compounds have also exhibited potent inhibition against MDR strains of S. aureus, including VRSA with MICs 0.06-4 µg mL-1. Compounds 4h, 4j, 4l, 4m, 4q, 4r, 9a, 9b, 9c, 9d, 9e, 9g, 9h, 9j, 13f and 17e also exhibited good antimycobacterial activity against M. tuberculosis with MIC 2-64 µg mL-1. The cytotoxicity assay using Vero cells revealed that all the compounds were non-toxic and exhibited a favorable selectivity index (SI >40). Time kill kinetics data indicated that compounds exhibited concentration-dependent killing. Furthermore, in silico studies were performed to decipher the possible mechanism of action. Comprehensively, these results highlight the potential of naphthalimide-thiourea derivatives as promising antibacterial agents.

9.
Biomed Pharmacother ; 173: 116289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452653

RESUMO

Mycobacterium tuberculosis (Mtb), causative agent of tuberculosis (TB) and non-tubercular mycobacterial (NTM) pathogens such as Mycobacterium abscessus are one of the most critical concerns worldwide due to increased drug-resistance resulting in increased morbidity and mortality. Therefore, focusing on developing novel therapeutics to minimize the treatment period and reducing the burden of drug-resistant Mtb and NTM infections are an urgent and pressing need. In our previous study, we identified anti-mycobacterial activity of orally bioavailable, non-cytotoxic, polycationic phosphorus dendrimer 2G0 against Mtb. In this study, we report ability of 2G0 to potentiate activity of multiple classes of antibiotics against drug-resistant mycobacterial strains. The observed synergy was confirmed using time-kill kinetics and revealed significantly potent activity of the combinations as compared to individual drugs alone. More importantly, no re-growth was observed in any tested combination. The identified combinations were further confirmed in intra-cellular killing assay as well as murine model of NTM infection, where 2G0 potentiated the activity of all tested antibiotics significantly better than individual drugs. Taken together, this nanoparticle with intrinsic antimycobacterial properties has the potential to represents an alternate drug candidate and/or a novel delivery agent for antibiotics of choice for enhancing the treatment of drug-resistant mycobacterial pathogens.


Assuntos
Dendrímeros , Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Antibacterianos/farmacologia , Dendrímeros/farmacologia , Preparações Farmacêuticas , Tuberculose/microbiologia
10.
ChemMedChem ; 19(8): e202300576, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38301146

RESUMO

Strategically controlling concentrations of lipid-conjugated L-tryptophan (vsPA) guides the self-assembly of nanostructures, transitioning from nanorods to fibres and culminating in spherical shapes. The resulting Peptide-Au hybrids, exhibiting size-controlled 1D, 2D, and 3D nanostructures, show potential in antibacterial applications. Their high biocompatibility, favourable surface area-to-volume ratio, and plasmonic properties contribute to their effectiveness against clinically relevant bacteria. This controlled approach not only yields diverse nanostructures but also holds promise for applications in antibacterial therapeutics.


Assuntos
Ouro , Nanoestruturas , Ouro/farmacologia , Ouro/química , Peptídeos Antimicrobianos , Peptídeos/farmacologia , Peptídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química
11.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260651

RESUMO

Most front-line tuberculosis drugs are ineffective against hypoxic non-replicating drug-tolerant Mycobacterium tuberculosis (Mtb) contributing to phenotypic antimicrobial resistance (AMR). This is largely due to the poor permeability in the thick and waxy cell wall of persister cells, leading to diminished drug accumulation and reduced drug-target engagement. Here, using an "arm-to-disarm" prodrug approach, we demonstrate that non-replicating Mtb persisters can be sensitized to Moxifloxacin (MXF), a front-line TB drug. We design and develop a series of nitroheteroaryl MXF prodrugs that are substrates for bacterial nitroreductases (NTR), a class of enzymes that are over-expressed in hypoxic Mtb. Enzymatic activation involves electron-transfer to the nitroheteroaryl compound followed by protonation via water that contributes to the rapid cleavage rate of the protective group by NTR to produce the active drug. Phenotypic and genotypic data are fully consistent with MXF-driven lethality of the prodrug in Mtb with the protective group being a relatively innocuous bystander. The prodrug increased intracellular concentrations of MXF than MXF alone and is more lethal than MXF in non-replicating persisters. Hence, arming drugs to improve permeability, accumulation and drug-target engagement is a new therapeutic paradigm to disarm phenotypic AMR.

12.
Drug Dev Res ; 85(1): e22123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840429

RESUMO

Sulfur-containing classes of the scaffold "Arylthioindoles" have been evaluated for antibacterial activity; they demonstrated excellent potency against methicillin-resistant Staphylococcus aureus (MRSA) as well as against vancomycin-resistant strains and a panel of clinical isolates of resistant strains. In this study, we have elucidated the mechanism of action of lead compounds, wherein they target the cell wall of S. aureus. Further, S. aureus failed to develop resistance against two lead compounds tested in a serial passage experiment in the presence of the compounds over a period of 40 days. Both the compounds demonstrated comparable in vivo efficacy with vancomycin in a neutropenic mice thigh infection model. The results of these antibacterial activities emphasize the excellent potential of thioethers for developing novel antibiotics and may fill in as a target for the adjustment of accessible molecules to develop new powerful antibacterial agents with fewer side effects.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Animais , Camundongos , Vancomicina/farmacologia , Sulfetos , Antibacterianos/farmacologia , Parede Celular , Indóis/farmacologia , Testes de Sensibilidade Microbiana
13.
Antibiotics (Basel) ; 12(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37887184

RESUMO

The emergence of multidrug-resistant (MDR) superbugs underlines the urgent need for innovative treatment options to tackle resistant bacterial infections. The clinical efficacy of natural products directed our efforts towards developing new antibacterial leads from naturally abundant known chemical structures. The present study aimed to explore an unusual class of phenylacylphenols (malabaricones) from Myristicamalabarica as antibacterial agents. In vitro antibacterial activity was determined via broth microdilution, cell viability, time-kill kinetics, biofilm eradication, intracellular killing, and checkerboard assays. The efficacy was evaluated in vivo in murine neutropenic thigh and skin infection models. Confocal and SEM analyses were used for mechanistic studies. Among the tested isolates, malabaricone B (NS-7) demonstrated the best activity against S. aureus with a favorable selectivity index and concentration-dependent, rapid bactericidal killing kinetics. It displayed equal efficacy against MDR clinical isolates of S. aureus and Enterococci, efficiently clearing S. aureus in intracellular and biofilm tests, with no detectable resistance. In addition, NS-7 synergized with daptomycin and gentamicin. In vivo, NS-7 exhibited significant efficacy against S. aureus infection. Mechanistically, NS-7 damaged S. aureus membrane integrity, resulting in the release of extracellular ATP. The results indicated that NS-7 can act as a naturally derived bactericidal drug lead for anti-staphylococcal therapy.

14.
Org Biomol Chem ; 21(41): 8289-8293, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37814982

RESUMO

Thiourea is an inexpensive and user friendly sulfur reagent that acts as a sulfur source. A simple and efficient protocol has been developed to access thioethers by reacting indoles with p-quinone methides using thiourea as the sulfur source. In our experiments, the reaction apparently proceeded through an S-(3-indolyl)isothiuronium iodide intermediate and subsequent generation of indolethiol that attacked the 1,6 position of p-quinone methides to give desired thioethers in good to excellent yields.

15.
RSC Med Chem ; 14(9): 1712-1721, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37731699

RESUMO

Antibiotic resistance is rapidly exacerbating the unceasing rise in nosocomial infections caused by drug-resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin-resistant Enterococcus (VRE). Therefore, there is a dire need for new therapeutic agents that can mitigate the unbridled emergence of drug-resistant pathogens. In the present study, several benzoxazole-thiazolidinone hybrids (BT hybrids) were synthesized and evaluated for their antibacterial activity against the ESKAP pathogen panel. The preliminary screening revealed the selective and potent inhibitory activity of hydroxy BT hybrids against S. aureus with MIC ≤ 4 µg mL-1. Hydroxy compounds (BT25, BT26, BT18, BT12, and BT11) exhibited a good selectivity index (SI > 20), which were determined to be non-toxic to Vero cells. An engaging fact is that two compounds BT25 and BT26 showed potent activity against various clinically-relevant and highly drug resistant S. aureus (MRSA & VRSA) and Enterococcus (VRE) isolates. These hybrids showed concentration-dependent bactericidal activity that is comparable to vancomycin. These experimental results were corroborated with docking, molecular dynamics, and free energy studies to discern the antibacterial mechanisms of hydroxy BT hybrids with three bacterial enzymes DNA gyrase B, MurB, and penicillin binding protein 4 (PBP4). The reassuring outcome of the current investigation confirmed that the aforementioned BT hybrids could be used as very promisingly potent antibacterial agents for the treatment of Staphylococcus aureus and Enterococcus infections.

16.
Eur J Med Chem ; 260: 115757, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659197

RESUMO

A series of pyrrole-thiazolidinone hybrids was designed, synthesized and evaluated for activities against ESKAP bacteria panel and mycobacterial pathogens. From the series, compound 9d showed prominent activity against S. aureus (MIC = 0.5 µg/mL) and compound 9k showed the most promising activity against M. tuberculosis H37Rv (MIC = 0.5 µg/mL). Potent derivatives were found to be non-toxic when tested against Vero cells. Compound 9d upon evaluation in vitro against several MRSA and VRSA strains produced activity comparable or better than standard drugs. In the anti-biofilm assay, 9d reduced S. aureus biofilm by >11% at 10x MIC. The dual inhibitory effect exhibited by pyrrole-thiazolidinone hybrids confirms their potential as new class of promising anti-infective agents.


Assuntos
Anti-Infecciosos , Mycobacterium tuberculosis , Chlorocebus aethiops , Animais , Staphylococcus aureus , Células Vero , Biofilmes , Pirróis/farmacologia
17.
J Control Release ; 360: 578-590, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442202

RESUMO

Tuberculosis is a challenging disease due to the intracellular residence of its pathogen, Mycobacterium tuberculosis, and modulation of the host bactericidal responses. Lipids from Mycobacterium tuberculosis regulate macrophage immune responses dependent on the infection stage and intracellular location. We show that liposomes constituted with immunostimulatory lipids from mycobacteria modulate the cellular immune response and synergize with sustained drug delivery for effective pathogen eradication. We evaluate the pH-dependent release of Rifampicin from the mycobacterial-lipid-derived liposomes intracellularly and in vitro, their cell viability, long-term stability, and antimicrobial efficacy. Intracellular drug levels were higher following liposome treatment compared with the free drug in a temporal fashion underlying a sustained release. The drug-encapsulated liposomes were taken up by clathrin-mediated endocytosis and elicited a robust pro-inflammatory immune response while localizing in the recycling and late endosomes. Notably, these were the same cellular compartments that contained the pathogen underlying localized intracellular targeting. Our results also imply a lipid-centric and species-specific selectivity of the liposomal drug formulations. This work provides a proof-of-concept for the dual-action of liposomes derived from the pathogen itself for their effective eradication, in conjunction with the attuned host immunomodulation.


Assuntos
Lipossomos , Mycobacterium tuberculosis , Agentes de Imunomodulação , Sistemas de Liberação de Medicamentos/métodos , Lipídeos , Endossomos
18.
Microbiol Spectr ; 11(4): e0503122, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428033

RESUMO

Amid the mounting burden of multidrug-resistant (MDR) bacterial infections on health care worldwide, drug repurposing, a time and cost-effective strategy to identify new applications for drugs approved for other indications, can effectively fill the void in the current antibiotic pipeline. In this study, we have repurposed a topical antifungal agent, oxiconazole, in combination with gentamicin against skin infections caused by multidrug-resistant Staphylococcus aureus. Oxiconazole was identified as having antibacterial activity against S. aureus via whole-cell screening assays against clinically relevant bacterial pathogens. It exhibited a potent in vitro profile, including equipotent activity against clinical drug-susceptible and -resistant S. aureus and Enterococcus spp. Checkerboard assays and time-kill kinetics studies demonstrated its concentration-dependent killing and ability to synergize with the approved antibiotics daptomycin and gentamicin against susceptible and MDR S. aureus strains. Oxiconazole also significantly eradicated preformed S. aureus biofilms in vitro. Eventually, in an assessment of its ability to generate resistant S. aureus mutants via serial passaging, oxiconazole displayed an extremely low propensity for developing stable resistance in S. aureus. Its in vivo efficacy alone and in combination with synergistic antibiotics was assessed in a murine superficial skin infection model of S. aureus, where it strongly synergized with gentamicin, exhibiting superior activity to the untreated control and drug-alone treatment groups. Thus, oxiconazole can be repurposed as an antibacterial alone and in combination with gentamicin against susceptible and gentamicin-resistant S. aureus infections. IMPORTANCE Staphylococcus aureus, which causes the majority of nosocomial and community-acquired infections globally, is a WHO high-priority pathogen for antibiotic research and development. In addition to invasive infections, it is the causative agent of moderate to severe skin infections, with an increasing prevalence of infections caused by MDR strains such as methicillin-resistant S. aureus (MRSA). Our study highlights the repurposing of oxiconazole, a topical antifungal agent, as an ideal candidate for combination therapy with gentamicin against susceptible and drug-resistant S. aureus skin infections due to its extremely low propensity for resistance generation in S. aureus, activity against MDR strains, bactericidal killing kinetics alone and in combination, broad antifungal efficacy, and excellent safety and tolerability profile.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Staphylococcus aureus , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
19.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446945

RESUMO

Hydrazone compounds represent an important area of research that includes, among others, synthetic approaches and biological studies. A series of 17 hydrazones have been synthesized by mechanochemical means. The fragments chosen were phenolic and furanyl aldehydes coupled with 12 heterocyclic hydrazines or hydrazinamides. All compounds can be obtained quantitatively when operating on a planetary ball mill and a maximum reaction time of 180 min (6 cycles of 30 min each). Complete spectroscopic analyses of hydrazones revealed eight compounds (3-5, 8-11, 16) present in one geometric form, six compounds (1, 2, 13-15) present in two isomeric forms, and three compounds (6, 7, 12) where one rotation is restricted giving rise to two different forms. The single crystal X-ray structure of one of the hydrazones bearing the isoniazid fragment (8) indicates a crystal lattice consisting of two symmetry-independent molecules with different geometries. All compounds obtained were tested for anti-infectious and antibacterial activities. Four compounds (1, 3, 5 and 8) showed good activity against Mycobacterium tuberculosis, and one (7) was very potent against Staphylococcus aureus. Most interesting, this series of compounds displayed very promising antileishmanial activity. Among all, compound 9 exhibited an IC50 value of 0.3 µM on the Leishmania donovani intramacrophage amastigote in vitro model and a good selectivity index, better than miltefosine, making it worth evaluating in vivo.


Assuntos
Antiprotozoários , Hidrazonas , Hidrazonas/farmacologia , Hidrazonas/química , Aldeídos , Amidas , Hidrazinas , Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Antiprotozoários/química , Relação Estrutura-Atividade
20.
RSC Med Chem ; 14(7): 1296-1308, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37484564

RESUMO

The urgent development of newer alternatives has been deemed a panacea for tackling emerging antimicrobial resistance effectively. Herein, we report the design, synthesis, and biological evaluation of 1,3-diaryl substituted pyrazole-based urea and thiourea derivatives as antimicrobial agents. Preliminary screening results revealed that compound 7a (3,4-dichlorophenyl derivative) exhibited potent activity against S. aureus (MIC = 0.25 µg mL-1) and compound 7j (2,4-difluorophenyl derivative) against Mycobacterium tuberculosis (MIC = 1 µg mL-1). Compounds 7a and 7j were non-toxic to Vero cells with a favorable selectivity index of 40 and 200, respectively, and demonstrated good microsomal stability. Compound 7a exhibited equipotent activity (MIC = 0.25 µg mL-1) against various multidrug-resistant strains of S. aureus, which include various strains of MRSA and VRSA, and elicited bacteriostatic properties. In an enzymatic assay, 7a effectively inhibited DNA gyrase supercoiling activity at a concentration of 8 times MIC. Further, molecular modeling studies suggested that compound 7a binds at the active site of DNA gyrase with good affinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA