Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e11152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495432

RESUMO

The endangered population of humpback whales (Megaptera novaeangliae) breeding and calving off the Cape Verde Islands (CVI) are known to migrate to feeding areas located along the eastern margin of the North Atlantic Ocean (Iceland, and Norway). Here, we report for the first time a confirmed migration of an individual humpback whale from CVI breeding ground to a western North Atlantic feeding ground of West Greenland. This individual humpback, which was photographed and identified off the coast of West Greenland in 2021, was previously documented in CVI 22 years before (1999). An annual subsistence hunt for humpbacks occurs in West Greenland and the resighting at this location with a humpback whale from CVI has strong implications for the conservation efforts of the small CVI population.

2.
Ecol Evol ; 13(9): e10477, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664493

RESUMO

In July 2022, two Risso's dolphins were reported stranded in Hrútafjörður (N65° 09,503; W21° 05,529), a fjord in northern Iceland. These events represent the first confirmed observations and strandings of Risso's dolphins in Icelandic waters. Given the uniqueness of these events, a decision was made to conduct full necropsies on these individuals. This study reports findings from viral and parasitological investigations, morphological and fitness measurements, as well as stomach and intestine content analysis for each of the Risso's dolphin specimens. The results of the necropsies do not suggest any other cause of death than lack of food and exhaustion. A large plastic fragment in one individual's stomach supports these suggestions. The presence of those specimens in the middle of the subarctic ocean illustrates ongoing changes in spatial distribution expanding northward, impacting not only Risso's dolphins but more generally marine life and biodiversity.

3.
Chemosphere ; 300: 134453, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35390406

RESUMO

The fin whale (Balaenoptera physalus) is a migratory filter-feeding species that is susceptible to ingest plastics while lunge feeding across the oceans. Plastic additives, such as phthalates, are compounds that are added to plastics to give them specific characteristics, such as flexibility. These so-called plasticizers are currently raising major concern because of their potential adverse effects on marine fauna. However, little is known about phthalate concentrations in tissues of baleen whales as well as their potential relation with biological variables (i.e., sex, body length and age) and their trends with time. In this study, we assessed the concentration of 13 phthalates in the muscle of 31 fin whales sampled in the feeding grounds off western Iceland between 1986 and 2015. We detected 5 of the 13 phthalates investigated, with di-n-butylphthalate (DBP), diethylphthalate (DEP) and bis(2-ethylhexyl) phthalate (DEHP) being the most abundant. None of the biological variables examined showed a statistically significant relationship with phthalate concentrations. Also, phthalate concentrations did not significantly vary over the 29-year period studied, a surprising result given the global scenario of increasing plastic pollution in the seas. The lack of time trends in phthalate concentration may be due in part to the fact that phthalates also originate from other sources. Although no adverse effects of phthalates on fin whales have been detected to date, further monitoring of these pollutants is required to identify potential toxic effects in the future.


Assuntos
Baleia Comum , Animais , Islândia , Ácidos Ftálicos , Plásticos
4.
Chemosphere ; 279: 130564, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33895676

RESUMO

In this study we aim to assess the daily ingestion rates of synthetic particles by the fin whales (Balaenoptera physalus) that feed off the western coast of Iceland. To do so, we collected and analysed samples from the stomach content of 25 fin whales, consisting solely of northern krill (Meganyctiphanes norvegica). The particles found consisted of fibres and fragments, mainly blue, black and red, with an average size of 1.2 ± 1.3 mm. To confirm the synthetic nature of these particles, we used Micro-Fourier Transform Infrared Spectroscopy and comparison with a polymer library. The mean concentration of synthetic particles in the krill samples found in the stomachs of whales was 0.057 particles per gram, a value much lower than that previously reported for particle uptake by krill. From this concentration in krill, we estimated that the daily intake of synthetic particles for the North Atlantic fin whale would be ranging from 38,646 ± 43,392 to 77,292 ± 86,784 particles per day. Although at this level it is not possible to assess the impact of synthetic particles and their associated chemicals on the North Atlantic fin whale population, concentrations of these contaminants are likely to increase in the future, potentially causing adverse effects on whales and other marine mammals.


Assuntos
Baleia Comum , Animais , Ingestão de Alimentos , Islândia , Estações do Ano , Baleias
5.
Evol Appl ; 14(2): 314-321, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664778

RESUMO

Biodiversity in the oceans has dramatically declined since the beginning of the industrial era, with accelerated loss of marine biodiversity impairing the ocean's capacity to maintain vital ecosystem services. A few organisms epitomize the damaging and long-lasting effects of anthropogenic exploitation: Some whale species, for instance, were brought to the brink of extinction, with their population sizes reduced to such low levels that may have caused a significant disruption to their reproductive dynamics and facilitated hybridization events. The incidence of hybridization is nevertheless believed to be rare, and very little information exists on its directionality. Here, using genetic markers, we show that all but one whale hybrid sample collected in Icelandic waters originated from the successful mating of male fin whale and female blue whale, thus suggesting unidirectional hybridization. We also demonstrate for the first time the existence of a second-generation adult (male) hybrid resulting from a backcross between a female hybrid and a pure male fin whale. The incidence of hybridization events between fin and blue whales is likely underestimated and the observed unidirectional hybridization (for F1 and F2 hybrids) is likely to induce a reproductive loss in blue whale, which may represent an additional challenge to its recovery in the Atlantic Ocean compared to other rorquals.

6.
Sci Total Environ ; 721: 137768, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197282

RESUMO

Pollution of the marine environment by litter composed of plastics is a growing concern. Chemical additives such as organophosphate flame retardants (OPFRs), which are added to plastics to improve their qualities, are in focus because they allegedly cause adverse effects on marine fauna. Here we analyse OPFR levels in the muscle of fin whales because, as a mysticete, this cetacean obtains its food by filter-feeding and is thus highly vulnerable to marine litter. Moreover, the fin whale performs long-range migrations from low-latitude areas in winter to high-latitude areas in summer, a trait that makes it a potentially good large-scale biomonitor of pollution. We also analyse OPFR levels in its main prey, the krill Meganyctiphanes norvegica, to assess transfer through diet. The samples analysed consisted of muscle tissue from 20 fin whales and whole-body homogenates of 10 krill samples, all collected off West Iceland. From the 19 OPFRs analysed, we detected 7 in the fin whale and 5 in the krill samples. Tri-n-butyl phosphate (TNBP), Isopropylated triphenyl phosphate (IPPP) and Triphenylphosphine oxide (TPPO) were the most abundant compounds found in both species. Mean ∑OPFR concentration, expressed on a lipid weight basis, was 985 (SD = 2239) ng g-1 in fin whale muscle, and 949 (SD = 1090) ng g-1 in krill homogenates. These results constitute the first evidence of the presence of OPFRs in the tissues of fin whales. Furthermore, they seem to support the non-significance of bioaccumulation of OPFRs through lifespan and of biomagnification trough the food web.


Assuntos
Baleia Comum , Retardadores de Chama , Animais , Islândia , Organofosfatos , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA