Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(33): 35420-35430, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39184522

RESUMO

The challenge of synthesizing noble metal nanostructures sustainably has encouraged researchers to explore biological routes for nanostructure production, such as biotemplating. Plant viruses with rod-shape morphology, such as tobacco mosaic virus (TMV) and barley stripe mosaic virus (BSMV), offer promising biotemplates to produce metal nanorods. TMV and BSMV can be incubated in aqueous metal precursor solutions to mineralize metals on the coat proteins (CPs) of the viruses. Previous studies have primarily examined palladium (Pd) mineralization on TMV and BSMV using Na2PdCl4 as the Pd precursor. There is limited scientific literature on the effect of using alternative Pd precursor solutions besides Na2PdCl4 such as K2PdCl4 and PdCl2 to mineralize Pd on TMV and BSMV. Past attempts at mineralizing other noble metals such as platinum (Pt) and gold (Au) required an initial layer of Pd to be deposited on the TMV and BSMV biotemplates. In this study, we aimed to expand the understanding of using alternative Pd precursor solutions to mineralize Pd on TMV and BSMV. Additionally, the deposition of Pt and Au onto TMV and BSMV without the need for an initial Pd mineralization layer was achieved using alternative Pt and Au precursors, including K2PtCl4 and AuCl3, respectively. Pd, Pt, and Au were successfully deposited on TMV and BSMV by incubation in aqueous solutions of Na2PdCl4, K2PdCl4, PdCl2, K2PtCl4, and AuCl3. Kinetic studies were also conducted using ultraviolet-visible (UV-vis) spectroscopy to examine the rates at which Pd, Pt, and Au precursor ions were reduced during the mineralization process, mimicking their adsorption onto TMV and BSMV CPs. BSMV adsorbed noble metal precursor ions faster than TMV as determined by UV-vis spectroscopy. While palladium nanorods (PdNRs) offer high electrical conductivity desirable for electronic applications, Pd-coated TMV and BSMV may face limitations due to their organic cores, potentially compromising conductivity. To address this, one approach is to convert the organic core into conductive amorphous carbon through thermal annealing. In this study, in situ transmission electron microscopy was utilized to thermally anneal Pd-TMV2Cys, thereby transforming them into PdNRs with amorphous carbon cores.

2.
Biochem Eng J ; 1992023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37692450

RESUMO

Viruses and virus-like particles are powerful templates for materials synthesis because of their capacity for precise protein engineering and diverse surface functionalization. We recently developed a recombinant bacterial expression system for the production of barley stripe mosaic virus-like particles (BSMV VLPs). However, the applicability of this biotemplate was limited by low stability in alkaline conditions and a lack of chemical handles for ligand attachment. Here, we identify and validate novel residues in the BSMV Caspar carboxylate clusters that mediate virion disassembly through repulsive interactions at high pH. Point mutations of these residues to create attractive interactions that increase rod length ~2 fold, with an average rod length of 91 nm under alkaline conditions. To enable diverse chemical surface functionalization, we also introduce reactive lysine residues at the C-terminus of BSMV coat protein, which is presented on the VLP surface. Chemical conjugation reactions with this lysine proceed more quickly under alkaline conditions. Thus, our alkaline-stable VLP mutants are more suitable for rapid surface functionalization of long nanorods. This work validates novel residues involved in BSMV VLP assembly and demonstrates the feasibility of chemical functionalization of BSMV VLPs for the first time, enabling novel biomedical and chemical applications.

3.
Vet Res ; 54(1): 11, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747286

RESUMO

Antimicrobial resistance (AMR) is a global health issue and surveillance of AMR can be useful for understanding AMR trends and planning intervention strategies. Salmonella, widely distributed in food-producing animals, has been considered the first priority for inclusion in the AMR surveillance program by the World Health Organization (WHO). Recent advances in rapid and affordable whole-genome sequencing (WGS) techniques lead to the emergence of WGS as a one-stop test to predict the antimicrobial susceptibility. Since the variation of sequencing and minimum inhibitory concentration (MIC) measurement methods could result in different results, this study aimed to develop WGS-based random forest models for predicting MIC values of 24 drugs using data generated from the same laboratories in Taiwan. The WGS data have been transformed as a feature vector of 10-mers for machine learning. Based on rigorous validation and independent tests, a good performance was obtained with an average mean absolute error (MAE) less than 1 for both validation and independent test. Feature selection was then applied to identify top-ranked 10-mers that can further improve the prediction performance. For surveillance purposes, the genome sequence-based machine learning methods could be utilized to monitor the difference between predicted and experimental MIC, where a large difference might be worthy of investigation on the emerging genomic determinants.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Taiwan , Algoritmo Florestas Aleatórias , Salmonella/genética , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana
4.
BMC Bioinformatics ; 22(Suppl 10): 629, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138350

RESUMO

BACKGROUND: The placental barrier protects the fetus from exposure to some toxicants and is vital for drug development and risk assessment of environmental chemicals. However, in vivo experiments for assessing the placental barrier permeability of chemicals is not ethically acceptable. Although ex vivo placental perfusion methods provide good alternatives for the assessment of placental barrier permeability, the application to a large number of test chemicals could be time- and resource-consuming. Computational prediction models for ex vivo placental barrier permeability are therefore desirable. METHODS: A total of 87 chemicals and corresponding 1444 physicochemical properties were divided into training and test datasets. Three types of algorithms including linear regression, random forest, and ensemble models were applied to develop prediction models for ex vivo placental barrier permeability. RESULTS: Among the tested models, the ensemble model integrating the previous two methods performed best for predicting ex vivo human placental barrier permeability with correlation coefficients of 0.887 and 0.825 when considering the applicability domain. An additional test on seven newly curated chemicals from the literature showed a good correlation coefficient of 0.879 which was further improved to 0.921 by considering the variation of experiments. CONCLUSION: In this study, the first valid predicting model for ex vivo human placental barrier permeability was developed following the OECD guideline. The model is expected to be useful for assessing the human placental barrier permeability and can be integrated with developmental toxicity prediction models for investigating the toxic effects of chemicals on the fetus.


Assuntos
Algoritmos , Placenta , Feminino , Humanos , Aprendizado de Máquina , Permeabilidade , Gravidez
5.
PeerJ ; 8: e9562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742813

RESUMO

BACKGROUND: The measurement of human fetal-maternal blood concentration ratio (logFM) of chemicals is critical for the risk assessment of chemical-induced developmental toxicity. While a few in vitro and ex vivo experimental methods were developed for predicting logFM of chemicals, the obtained experimental results are not able to directly predict in vivo outcomes. METHODS: A total of 55 chemicals with logFM values representing in vivo fetal-maternal blood ratio were divided into training and test datasets. An interpretable linear regression model was developed along with feature selection methods. Cross-validation on training dataset and prediction on independent test dataset were conducted to validate the prediction model. RESULTS: This study presents the first valid quantitative structure-activity relationship model following the Organisation for Economic Co-operation and Development (OECD) guidelines based on multiple linear regression for predicting in vivo logFM values. The autocorrelation descriptor AATSC1c and information content descriptor ZMIC1 were identified as informative features for predicting logFM. After the adjustment of the applicability domain, the developed model performs well with correlation coefficients of 0.875, 0.850 and 0.847 for model fitting, leave-one-out cross-validation and independent test, respectively. The model is expected to be useful for assessing human transplacental exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA