Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Biol Macromol ; 267(Pt 1): 131369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580026

RESUMO

Chitosan acts as a versatile carrier in polymeric nanoparticle (NP) for diverse drug administration routes. Delivery of antioxidants, such as quercetin (Qu) showcases potent antioxidant and anti-inflammatory properties for reduction of various cardiovascular diseases, but low water solubility limits uptake. To address this, we developed a novel layer-by-layer zein/gamma-polyglutamic acid (γPGA)/low-molecular-weight chitosan (LC)/fucoidan NP for encapsulating Qu and targeting inflamed vessel endothelial cells. We used zein (Z) and γPGA (r) to encapsulate Qu (Qu-Zr NP) exhibited notably higher encapsulation efficiency compared to zein alone. Qu-Zr NP coated with LC (Qu-ZrLC2 NP) shows a lower particle size (193.2 ± 2.9 nm), and a higher zeta potential value (35.2 ± 0.4 mV) by zeta potential and transmission electron microscopy analysis. After coating Qu-ZrLC2 NP with fucoidan, Qu-ZrLC2Fa NP presented particle size (225.16 ± 0.92 nm), zeta potential (-25.66 ± 0.51 mV) and maintained antioxidant activity. Further analysis revealed that Qu-ZrLC2Fa NP were targeted and taken up by HUVEC cells and EA.hy926 endothelial cells. Notably, we observed Qu-ZrLC2Fa NP targeting zebrafish vessels and isoproterenol-induced inflamed vessels of rat. Our layer-by-layer formulated zein/γPGA/LC/fucoidan NP show promise as a targeted delivery system for water-insoluble drugs. Qu-ZrLC2Fa NP exhibit potential as an anti-inflammatory therapeutic for blood vessels.


Assuntos
Antioxidantes , Quitosana , Nanopartículas , Ácido Poliglutâmico , Ácido Poliglutâmico/análogos & derivados , Polissacarídeos , Quercetina , Peixe-Zebra , Zeína , Quercetina/farmacologia , Quercetina/química , Quitosana/química , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Zeína/química , Nanopartículas/química , Ratos , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Inflamação/tratamento farmacológico , Inflamação/patologia , Peso Molecular , Portadores de Fármacos/química , Tamanho da Partícula , Vasos Sanguíneos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Masculino , Nanopartículas em Multicamadas
2.
Org Lett ; 25(43): 7763-7768, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37622587

RESUMO

A strategy for the synthesis of dibenz[a,j]anthracenes (DBAs) from cyclohexa-2,5-diene-1-carboxylic acids is presented. Our approach involves sequential C-H olefination, cycloaddition, and decarboxylative aromatization. In the key step for DBA skeleton construction, the bis-C-H olefination products, 1,3-dienes, are utilized as substrates for [4 + 2] cycloaddition with benzyne. This concise synthetic route allows for regioselective ring formation and functional group introduction. The structural features and photophysical properties of the resulting DBA molecules are discussed.

3.
Environ Res ; 236(Pt 2): 116785, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517493

RESUMO

Tetracycline (TC), which is ubiquitous in the aquatic environment, can cause ecological imbalance and adversely affect human health. Therefore, a quick, inexpensive, and easy method for the detection of TC in water systems is highly desirable. This study reports the development of a novel electrochemical sensor from waste peanut shell for the quick detection of TC in water. Raman and TEM lattice mapping analyses confirmed the successful preparation of graphene -like biochar from waste peanut shells (PSs) via hydrothermal and pyrolysis processes. An electrochemical sensor, PS@glassy carbon electrode (PS@GCE), was then developed by coating the prepared graphene-like biochar on the surface of a glass electrode to enhance its conductivity. The feasibility of using this sensor for the detection of TC in the aqueous system was investigated. The PS@GCE sensor exhibited excellent sensitivity with a low detection limit of 3.6 × 10--9 nM and a linear range of 10-10-102 µM. These results were attributed to the large specific surface area and high conductivity, of the PS biochar. The stability of the PS@GCE sensor was also investigated in the presence of TC (10-4 M) and interfering species (10-2 M) and recovery rates in the range of 86.4%-116.0% were achieved, thus indicating the absence of an interference range of range of 84.3%-98.2% with relative standard deviation lower than 6% were achieved upon the detection of TC in natural water samples using the designed sensor, thus confirming the superior repeatability of the PS@GCE sensor. Consequently, the designed electrode has a high potential for application in the detection of TC in natural aqueous systems.

4.
Int J Biol Macromol ; 224: 927-937, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306906

RESUMO

Low-molecular-weight chitosan (LMWCS) damaged cell membranes in zebrafish showed its possibility to release reporter proteins for detection. In this study, we developed a simple fluorometric-based assay for the evaluation of clinical antiangiogenic drugs using LMWCS and Tg(fli1:EGFP) transgenic zebrafish, which expressed green-fluorescence protein (GFP) in the endothelial cells of blood vessel. In vitro stable and transiently transfected cell lines was released luciferase and green fluorescent protein (GFP) for intensity evaluation upon LMWCS fluorometric-based assay. In vivo Tg(fli1:EGFP) transgenic zebrafish was also released GFP from endothelial cells of blood vessels and show an increase of fluorescent intensity upon LMWCS fluorometric-based assay. Treatment with the clinical antiangiogenic drug sorafenib and analyzed by LMWCS fluorometric-based assay showed significantly reduction of angiogenesis. Furthermore, treatment with 2 µM sorafenib showed a significant reduction in angiogenesis of the intersegmental vein (ISV) and dorsal longitudinal anastomotic vessels (DLAV) in Tg(fli1:EGFP) transgenic zebrafish. Fluorescence intensity reduction from 2 µM sorafenib was used as a factor in the LMWCS fluorescence-based assay for relative antiangiogenic evaluation. Relative angiogenesis evaluation of the clinical drugs axitinib, cabozantinib, and regorafenib showed a significant reduction. Collectively, this study provided a simple, convenient, and rapid LMWCS fluorometric-based assay for evaluating angiogenic drugs using transgenic zebrafish.


Assuntos
Inibidores da Angiogênese , Quitosana , Animais , Peixe-Zebra/metabolismo , Células Endoteliais/metabolismo , Sorafenibe , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/metabolismo
5.
Front Chem ; 10: 931584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35880111

RESUMO

The blood-brain barrier (BBB) is a highly selective cellular barrier that tightly controls the microenvironment of the central nervous system to restrict the passage of substances, which is a primary challenge in delivering therapeutic drugs to treat brain diseases. This study aimed to develop simple surface modifications of mesoporous silica nanoparticles (MSNs) without external stimuli or receptor protein conjugation, which exhibited a critical surface charge and size allowing them to cross the BBB. A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to -51.6 mV. Confocal microscopic results showed that 50 nm of strongly negatively charged N4-RMSN50@PEG/THPMP (∼-40 mV) could be significantly observed outside blood vessels of the brain in Tg(zfli1:EGFP) transgenic zebrafish embryos superior to the other negatively charged MSNs. However, very few positively charged MSNs were found in the brain, indicating that negatively charged MSNs could successfully penetrate the BBB. The data were confirmed by high-resolution images of 3D deconvoluted confocal microscopy and two-photon microscopy and zebrafish brain tissue sections. In addition, while increasing the size to 200 nm but maintaining the similar negative charge (∼40 mV), MSNs could not be detected in the brain of zebrafish, suggesting that transport across the BBB based on MSNs occurred in charge- and size-dependent manners. No obvious cytotoxicity was observed in the CTX-TNA2 astrocyte cell line and U87-MG glioma cell line treated with MSNs. After doxorubicin (Dox) loading, N4-RMSN50@PEG/THPMP/Dox enabled drug delivery and pH-responsive release. The toxicity assay showed that N4-RMSN50@PEG/THPMP could reduce Dox release, resulting in the increase of the survival rate in zebrafish. Flow cytometry demonstrated N4-RMSN50@PEG/THPMP had few cellular uptakes. Protein corona analysis revealed three transporter proteins, such as afamin, apolipoprotein E, and basigin, could contribute to BBB penetration, validating the possible mechanism of N4-RMSN50@PEG/THPMP crossing the BBB. With this simple approach, MSNs with critical negative charge and size could overcome the BBB-limiting characteristics of therapeutic drug molecules; furthermore, their use may also cause drug sustained-release in the brain, decreasing peripheral toxicity.

6.
Int J Biol Macromol ; 194: 384-394, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822829

RESUMO

Many challenges, such as virus infection, extreme weather and long cultivation periods, during the development of fish larvae have been observed, especially in aquaculture. Gene delivery is a useful method to express functional genes to defend against these challengers. However, the methods for fish larvae are insufficient. In our earlier report, low-molecular-weight chitosan (LMWCS) showed a strong positive charge and may be useful for polyplex formulation. Herein, we present a simple self-assembly of LMWCS polyplexes (LMWCSrNPs) for gene delivery into zebrafish larvae. Different weight ratios of LMWCS/gamma-polyglutamic acid (γ-PGA)/plasmid DNA were analyzed by gel mobility assay. Delivery efficiency determined by green fluorescent protein (GFP) expression in zebrafish liver (ZFL) cells showed that delivery efficiency at a weight ratio of 20:8:1 was higher than others. Zeta potential and transmission electron microscopy (TEM) analysis showed that the round shape of the particle size varied. In our earlier reports, IRF9S2C could induce interferon-stimulated gene (ISG) expression to induce innate immunity in zebrafish and pufferfish. Further delivery of pcDNA3-IRF9S2C-HA plasmid DNA into ZFL cells and zebrafish larvae by LMWCSrNP successfully induced ISG expression. Collectively, LMWCSrNP could be a novel gene delivery system for zebrafish larvae and might be used to improve applications in aquaculture.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Ácidos Nucleicos/administração & dosagem , Ácido Poliglutâmico/análogos & derivados , Animais , Sobrevivência Celular , Células Cultivadas , Fenômenos Químicos , Portadores de Fármacos/síntese química , Expressão Gênica , Genes Reporter , Larva , Peso Molecular , Ácido Poliglutâmico/síntese química , Ácido Poliglutâmico/química , Análise Espectral , Peixe-Zebra
7.
Org Lett ; 23(24): 9468-9473, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34881572

RESUMO

A carboxylate-assisted palladium-catalyzed Mizoroki-Heck arylation of electron-deficient internal alkenes is described herein. This protocol utilized a free carboxylic acid as the directing group for regio- and stereoselective Mizoroki-Heck arylation of ß-cyclohexadienyl acrylates and styrenes with various aryl iodides. The synthetic application has been exhibited by decarboxylative aromatization and iodolactonization/hydrolysis of the resulting polyenes providing trisubstituted alkenes and structurally diverse hydroxyl lactones. Additionally, mechanistic studies have been performed to elucidate the reaction outcome of regio- and stereoselectivity.

8.
J Org Chem ; 86(17): 12168-12180, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34346223

RESUMO

A palladium-catalyzed regiospecific decarboxylative ε-allylation of (cyclohexadienylidene)malononitriles is presented for the synthesis of functionalized α-allyl-α-aryl malononitriles. This reaction proceeds via a resonance-stabilized α-aryl malononitrile anion, resulting in a wide range of α-allyl-α-aryl malononitriles in high yields with excellent linear product selectivity. We have also shown that the resulting products can be transformed into valuable synthetic intermediates by decyanation and Mizoroki-Heck arylation. In addition, an enantioselective decarboxylative allylation reaction is also presented.

9.
J Org Chem ; 86(13): 9084-9095, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34115505

RESUMO

A protocol in the preparation of functionalized N-allyl-N-aryl sulfonamides via palladium-catalyzed intramolecular decarboxylative N-allylation reaction is presented. The alkylated 2,5-cyclohexadienyl ketoesters reacted with arylsulfonamides in the presence of titanium tetrachloride and pyridine, which allows the formation of alkylated 2,5-cyclohexadienyl sulfonyl iminoesters which then undergo a palladium-catalyzed intramolecular allylic amidation through decarboxylative aromatization to provide functionalized N-allyl-N-aryl sulfonamides. This allylation protocol proceeds with good regioselectivity. Moreover, we have also shown that N-allyl-N-aryl sulfonamide can be transformed into 4-aryl-1,2,3,4-tetrahydroquinoline and nitrogen-containing ß-hydroxysulfide bioactives.

10.
Cells ; 10(1)2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375719

RESUMO

Metastasis is the leading cause of death in lung adenocarcinomas. Identifying potential prognostic biomarkers and exploiting regulatory mechanisms could improve the diagnosis and treatment of lung cancer patients. We previously found that cluster of differentiation 109 (CD109) was upregulated in lung tumor tissues, and CD109 overexpression was correlated with the invasive and metastatic capacities of lung adenocarcinoma cells. However, the contribution of CD109 to lung tumorigenesis remains to be elucidated. In the present study, we identified that CD109 was upregulated in metastatic lung adenocarcinoma cells, and elevation of CD109 was correlated with epithelial-to-mesenchymal transition (EMT) traits in patients with lung adenocarcinoma. Functionally, CD109 expression was crucial for EMT gene expressions, tumor invasiveness, and cancer stemness properties. Moreover, elevation of CD109 was accompanied by upregulation of the yes-associated protein (YAP) signature in metastatic lung cancer cells and lung cancer patients, and activation of YAP was demonstrated to participate in CD109-elicited EMT gene expressions and tumor invasiveness. Our study reveals the molecular mechanism underlying CD109 in lung tumor aggressiveness, and CD109 could be a potential diagnostic and therapeutic target for lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão/patologia , Antígenos CD/fisiologia , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/fisiologia , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Animais , Biomarcadores Tumorais/fisiologia , Carcinogênese , Proteínas Ligadas por GPI/fisiologia , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
11.
Org Lett ; 22(17): 6765-6770, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32847360

RESUMO

An example of proaromatic C(alkenyl)-H olefination is reported. This protocol utilized a free carboxylic acid as a directing group for C(alkenyl)-H activation of 1,4-cyclohexadiene and coupled with various alkenes. Direct and sequential bisolefinations of proaromatic acids were achieved. The synthetic applicability has been exhibited by [4 + 2] cycloaddition and decarboxylative aromatization of the resulting proaromatic 1,3-dienes. Additionally, several kinetic studies also have been carried out to elucidate the reaction mechanism.

12.
Carbohydr Polym ; 240: 116164, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32475540

RESUMO

Chitosan is suggested as no or low toxicity and biocompatible biomaterial. Digestion of chitosan to reduce molecular weight and formulate nanoparticle was generally used to improve efficiency for DNA or protein delivery. However, the toxicity of low-molecular-weight chitosan (LMWCS) towards freshwater fishes has not been well evaluated. Here, we reported the toxic mechanism of LMWCS using zebrafish (Danio rerio) liver (ZFL) cell line, zebrafish larvae, and adult fish. LMWCS rapidly induced cytotoxicity of ZFL cells and death of zebrafish. Cell membrane damaged by LMWCS reduced cell viability. Damaged membrane of epithelial cell in zebrafish larvae induced breakage of the yolk. Adult fish exhibited hypoxia before death due to multiple damages induced by LMWCS. Although the toxicity of LMWCS was revealed in zebrafish model, the toxicity was only present in pH < 7 and easy be neutralized by other negative ions. Collectively, these data improved a new understanding of LMWCS properties.


Assuntos
Materiais Biocompatíveis/toxicidade , Quitosana/toxicidade , Larva/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Quitosana/análogos & derivados , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Peso Molecular , Testes de Toxicidade
13.
Cancer Sci ; 111(5): 1652-1662, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32133706

RESUMO

Lung cancer is the most commonly diagnosed cancer worldwide, and metastasis in lung cancer is the leading cause of cancer-related deaths. Thus, understanding the mechanism of lung cancer metastasis will improve the diagnosis and treatment of lung cancer patients. Herein, we found that expression of cluster of differentiation 109 (CD109) was correlated with the invasive and metastatic capacities of lung adenocarcinoma cells. CD109 is upregulated in tumorous tissues, and CD109 overexpression was associated with tumor progression, distant metastasis, and a poor prognosis in patient with lung adenocarcinoma. Mechanistically, expression of CD109 regulates protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling via its association with the epidermal growth factor receptor (EGFR). Inhibition of CD109 decreases EGFR phosphorylation, diminishes EGF-elicited activation of AKT/mTOR, and sensitizes tumor cells to an EGFR inhibitor. Taken together, our results show that CD109 is a potential diagnostic and therapeutic target in lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão/patologia , Antígenos CD/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Antígenos CD/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/genética , Fosforilação , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
14.
Int J Biol Macromol ; 149: 600-608, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004612

RESUMO

Fucoidan is a fucose-rich polysaccharide that has gained attention for its various anticancer properties. However, the effect and underlying mechanism of fucoidan on triple-negative breast cancer (TNBC) are still unknown. Herein, we investigated the anticancer potential of fucoidan from Laminaria japonica. We found that fucoidan showed modest antiproliferative activity against TNBC cells, while it effectively reduced migratory and invasive capacities. Mechanistically, fucoidan suppressed activation of MAPK and PI3K followed by inhibition of AP-1 and NF-κB signaling in TNBC. Additionally, fucoidan downregulated expressions of proangiogenic factors in TNBC cells, and fucoidan blocked tumor-elicited tube formation by human umbilical vascular endothelial cells (HUVECs). We also observed that fucoidan blocked tumor adhesion and invasion towards HUVECs. Surprisingly, fucoidan robustly suppressed tube formation on HUVECs. Moreover, fucoidan inhibited in vivo angiogenesis and micrometastasis in a transgenic zebrafish model. Together, L. japonica fucoidan exhibits potent antitumor effects by its attenuation of invasiveness and proangiogenesis in TNBC.


Assuntos
Laminaria/química , Neovascularização Patológica/tratamento farmacológico , Polissacarídeos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , NF-kappa B/genética , Micrometástase de Neoplasia , Neovascularização Patológica/patologia , Polissacarídeos/química , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Neurotherapeutics ; 17(3): 1212-1227, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31916238

RESUMO

DNA damage-inducible transcript 4 (DDIT4) is known to participate in various cancers, including glioblastoma multiforme (GBM). However, contradictory roles of DDIT4 exist in inducing cell death and possessing anti-apoptotic functions against cancer progression. Herein, we investigated DDIT4 signaling in GBM and temozolomide (TMZ) drug resistance. We identified that TMZ induced DDIT4 upregulation, leading to desensitization against TMZ cytotoxicity in GBM cells. Higher DDIT4 levels were found in glioma cells and mesenchymal-type GBM patients, and these higher levels were positively correlated with mesenchymal markers. Furthermore, patients with lower DDIT4 levels, especially O-6-methylguanine-DNA methyltransferase (MGMT)-methylated patients, exhibited better TMZ therapeutic efficacy. We determined that higher levels of 5 DDIT4-associated downstream genes, including SLC2A3 (also known as glucose transporter 3 (GLUT3)), can be used to predict a poor prognosis. Among these 5 genes, only GLUT3 was upregulated in both TMZ-treated and DDIT4-overexpressing cells. DDIT4-mediated GLUT3 expression was also identified, and its expression decreased TMZ's cytotoxicity. A significant correlation existed between DDIT4 and GLUT3. DDIT4 signaling was found to be involved in both glycolytic and autophagic pathways. However, GLUT3 only participated in the exhibition of DDIT4-mediated stemness, resulting from glycolytic regulation, but not in DDIT4-mediated autophagic signaling. Finally, we identified TMZ-upregulated activating transcription factor 4 (ATF4) as an upstream regulator of DDIT4-mediated GLUT3/stemness signaling and autophagy. Consequently, ATF4/DDIT4 signaling was connected to both autophagy and GLUT3-regulated stemness, which are involved in TMZ drug resistance and the poor prognoses of GBM patients. Targeting DDIT4/GLUT3 signaling might be a new direction for glioma therapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Dano ao DNA/fisiologia , Glioblastoma/metabolismo , Transportador de Glucose Tipo 3/biossíntese , Temozolomida/uso terapêutico , Fatores de Transcrição/biossíntese , Adolescente , Adulto , Idoso , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Criança , Dano ao DNA/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Transportador de Glucose Tipo 3/genética , Humanos , Lactente , Pessoa de Meia-Idade , Temozolomida/farmacologia , Fatores de Transcrição/genética , Resultado do Tratamento
16.
PLoS One ; 14(12): e0225913, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805126

RESUMO

Temozolomide (TMZ) is a first-line alkylating agent for glioblastoma multiforme (GBM). Clarifying the mechanisms inducing TMZ insensitivity may be helpful in improving its therapeutic effectiveness against GBM. Insulin-like growth factor (IGF)-1 signaling and micro (mi)RNAs are relevant in mediating GBM progression. However, their roles in desensitizing GBM cells to TMZ are still unclear. We aimed to identify IGF-1-mediated miRNA regulatory networks that elicit TMZ insensitivity for GBM. IGF-1 treatment attenuated TMZ cytotoxicity via WNT/ß-catenin signaling, but did not influence glioma cell growth. By miRNA array analyses, 93 upregulated and 148 downregulated miRNAs were identified in IGF-1-treated glioma cells. miR-513a-5p from the miR-513a-2 gene locus was upregulated by IGF-1-mediated phosphoinositide 3-kinase (PI3K) signaling. Its elevated levels were also observed in gliomas versus normal cells, in array data of The Cancer Genome Atlas (TCGA), and the GSE61710, GSE37366, and GSE41032 datasets. In addition, lower levels of neural precursor cell-expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin protein ligase that inhibits WNT signaling, were found in gliomas by analyzing cells, arrays, and RNA sequencing data of TCGA glioma patients. Furthermore, a negative correlation was identified between miR-513a-5p and NEDD4L in glioma. NEDD4L was also validated as a direct target gene of miR-513a-5p, and it was reduced by IGF-1 treatment. Overexpression of NEDD4L inhibited glioma cell viability and reversed IGF-1-repressed TMZ cytotoxicity. In contrast, miR-513a-5p significantly affected NEDD4L-inhibited WNT signaling and reduced TMZ cytotoxicity. These findings demonstrate a distinct role of IGF-1 signaling through miR-513a-5p-inhibited NEDD4L networks in influencing GBM's drug sensitivity to TMZ.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioma/genética , Glioma/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Temozolomida/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Interferência de RNA
17.
Pharmacol Res ; 147: 104390, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31398406

RESUMO

Temozolomide (TMZ) is a first-line chemotherapeutic agent used against glioblastoma multiforme (GBM), but this disease exhibits recurrence and high lethality. Therefore, it is critical to explore biomarkers which involve in drug resistance and can be represented as different therapeutic effects after a diagnosis. We attempted to investigate the underlying variably expressed genes that contribute to the formation of resistance to TMZ. We analyzed gene and microRNA (miR) data from GBM patients in The Cancer Genome Atlas (TCGA) database to identify genetic factors associated with poor TMZ efficacy. By conducting a gene set enrichment analysis (GSEA), the epithelial-to-mesenchymal transition (EMT) was associated with poor TMZ responses. To identify roles of microRNAs in regulating TMZ resistance, a differential microRNA analysis was performed in TMZ-treated GBM patients. Downregulation of miR-140 was significantly correlated with poor survival. By integrating TCGA transcriptomic data and genomics of drug sensitivity in cancer (GDSC), cathepsin B (CTSB) was inversely associated with miR-140 expression and poor TMZ efficacy. By a pan-cancer analysis, both miR-140 and CTSB were found to be prognostic factors in other cancer types. We also identified that CTSB was a direct target gene of miR-140. Overexpression of miR-140 reduced CTSB levels, enhanced TMZ cytotoxicity, suppressed the mesenchymal transition, and influenced CTSB-regulated tumor sphere formation and stemness marker expression. In contrast, overexpression of CTSB decreased TMZ-induced glioma cell death, promoted the mesenchymal transition, and attenuated miR-140-increased TMZ cytotoxicity. These findings provide novel targets to increase the therapeutic efficacy of TMZ against GBM.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Catepsina B/genética , Transição Epitelial-Mesenquimal , Glioblastoma/tratamento farmacológico , MicroRNAs , Temozolomida/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Modelos de Riscos Proporcionais , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Temozolomida/uso terapêutico
18.
J Org Chem ; 84(2): 653-665, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30596422

RESUMO

A strategy toward the preparation of substituted allyl aryl ethers from benzoic acids via a dearomatization and decarboxylative allylation (DcA) reaction is presented. The benzoic acids undergo a dearomatization to give alkylated 2,5-cyclohexadienyl ketoesters which are subjected to a palladium-catalyzed DcA reaction, providing a variety of functionalized allyl aryl ethers. In addition, the combination of a resonance stabilized DcA reaction with a Claisen rearrangement for the synthesis of multisubstituted phenols and applying to dihydroplicatin B derivative synthesis is also presented.

19.
J Steroid Biochem Mol Biol ; 185: 163-171, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145226

RESUMO

We previously demonstrated that progesterone (P4) up-regulated p53 expression, which in turn increased p21 and p27 expression, and finally resulted in proliferation inhibition in human umbilical vein endothelial cells (HUVEC). While a direct transcriptional activation of p21 by p53 protein has been clearly elucidated, the mechanism by which p53 induces p27 expression has not been documented. In this study, we identified three putative p53 protein binding domains at the p27 promoter. Luciferase assay showed that the activity of ectopically introduced p27 promoter constructs containing the potential p53 protein binding region was significantly increased by P4. Immunoblotting analysis indicated that P4 increased the level of p53 protein. Treatment with pifithrin-α-HBr (PFTα), a specific blocker of p53-responsive gene transactivation, reduced the P4-increased p27 promoter activity and p27 protein expression. Transfection with dominant-negative mutants of p53 (C135Y, R175H and R248 W) abolished the P4-increased p27 promoter activity. Moreover, deletion or TCCT nucleotide sequence fill-in at the core site of any of p53 protein binding domains led to the irresponsiveness of the p27 promoter to P4 treatment. Interestingly, immunoprecipitation and chromatin-immunoprecipitation analyses demonstrated that P4 increased the complex of p53-P4 receptor (PR) protein in the nucleus and the assembly of PR protein to the p53 protein binding region of the p27 promoter. Ectopic co-overexpression of p53 and PR-A constructs further augmented the P4-increased p27 promoter activity. Taken together, the results from the present study suggest that P4-increased p53 expression might directly up-regulate p27 transactivation, and PR-A protein might promote this effect by forming complex with p53 protein.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Sítios de Ligação , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteína Supressora de Tumor p53/genética
20.
Sci Rep ; 8(1): 16247, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389973

RESUMO

We previously showed that overexpression of Thy-1 inhibited and knock-down of Thy-1 enhanced endothelial cell migration. Here, we used phorbol-12-myristate-13-acetate (PMA) as an inducer for Thy-1 expression to investigate molecular mechanisms underlying Thy-1 up-regulation. Our data showed that increased levels of Thy-1 mRNA and protein in endothelial cells were observed at 14-18 hours and 20-28 hours after PMA treatment, respectively. Treatment with PMA for 32 hours induced Thy-1 up-regulation and inhibited capillary-like tube formation and endothelial cell migration. These effects were abolished by Röttlerin (a PKC-δ inhibitor), but not Gö6976 (a PKC-α/ß inhibitor). Moreover, pre-treatment with Bay 61-3606 (a Syk inhibitor) or Bay 11-7082 (a NF-κB inhibitor) abolished the PMA-induced Thy-1 up-regulation and migration inhibition in endothelial cells. Using the zebrafish model, we showed that PMA up-regulated Thy-1 and inhibited angiogenesis through the PKC-δ-mediated pathway. Surprisingly, we found that short-term (8-10 hours) PMA treatment enhanced endothelial cell migration. However, this effect was not observed in PMA-treated Thy-1-overexpressed endothelial cells. Taken together, our results suggest that PMA initially enhanced endothelial cell migration, subsequently activating the PKC-δ/Syk/NF-κB-mediated pathway to up-regulate Thy-1, which in turn inhibited endothelial cell migration. Our results also suggest that Thy-1 might play a role in termination of angiogenesis.


Assuntos
Movimento Celular/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Antígenos Thy-1/metabolismo , Acetofenonas/farmacologia , Animais , Animais Geneticamente Modificados , Benzopiranos/farmacologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Animais , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Nitrilas/farmacologia , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , Sulfonas/farmacologia , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Antígenos Thy-1/genética , Regulação para Cima/efeitos dos fármacos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA