Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(20): 6782-6792, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31042867

RESUMO

Membranes for biologically and biomedically related applications must be bioinert, that is, resist biofouling by proteins, human cells, bacteria, algae, etc. Hydrophobic materials such as polysulfone, polypropylene, or poly(vinylidene fluoride) (PVDF) are often chosen as matrix materials but their hydrophobicity make them prone to biofouling, which in turn limits their application in biological/biomedical fields. Here, we designed PVDF-based membranes by precipitation from the vapor phase and zwitterionized them in situ to reduce their propensity to biofouling. To achieve this goal, we used a copolymer containing phosphorylcholine groups. An in-depth physicochemical characterization revealed not only the controlled presence of the copolymer in the membrane but also that bicontinuous membranes could be formed. Membrane hydrophilicity was greatly improved, resulting in the mitigation of a variety of biofoulants: the attachment of Stenotrophomonas maltophilia, Streptococcus mutans, and platelets was reduced by 99.9, 99.9, and 98.9%, respectively. Besides, despite incubation in a plasma platelet-poor medium, rich in plasma proteins, a flux recovery ratio of 75% could be measured while it was only 40% with a hydrophilic commercial membrane of similar structure and physical properties. Similarly, the zwitterionic membrane severely mitigated biofouling by microalgae during their harvesting. All in all, the material/process combination presented in this work leads to antibiofouling porous membranes with a large span of potential biomedically and biologically related applications.

2.
J Mater Chem B ; 7(17): 2878-2887, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255090

RESUMO

Ion-specific effects offer a great opportunity to construct intelligent macromolecular systems with diverse architectures, on-demand controlled release behaviors and interfacial responsiveness. Herein, we developed gel-like polyelectrolyte/counterion complexes by ionotropic gelation of poly((trimethylamino)ethyl methacrylate chloride-co-sulfobetaine methacrylate) (poly(TMAEMA-co-SBMA)) and kosmotropic polyphosphate (PP). The strong water-mediated ionic crosslinking between the cationic poly(TMAEMA) and multivalent anionic PP leads to ionic association and formation of stable dispersive colloids and gel-like complexes. Zwitterionic SBMA possesses charge balance and strong hydration as well as insusceptibility to the presence of PP. The unique features of SBMA were applied to finely adjust the physical and biological properties of gel-like complexes. Accordingly, the molar composition of poly(TMAEMA-co-SBMA) was varied to evaluate its effects on the formation of the ionic complexes, water content, gel volume, ion-exchange capability, and viscoelastic recovery upon intermittent shear stress. The state diagrams of the poly(TMAEMA-co-SBMA) solutions as a function of the PP concentration were scrutinized in order to discover the relation between the ionic association and complex formation. The stability of the polymeric ionic complex structures was determined by the cationic molecular composition in the polymers and ionic strength. In terms of applications, the poly(TMAEMA-co-SBMA)/PP gel-like complexes served as an antimicrobial agent to inactivate pathogenic bacteria via leaching and contact killing approaches. The hemostasis of the complex gels in a tail-bleeding assay using Wistar rats was verified to ensure the potential in medical applications. Moreover, the gel-like complex was applied onto various substrates as an adhesive in comparison with commercial superglue gel, revealing the robust, substrate-independent, water-based, repeatable and removable adhesive property of the ionic complex glue. Consequently, this study was carried out in an attempt to explore the structure-property relation of ionically crosslinked polymer networks for a wide spectrum of applications.


Assuntos
Adesivos/química , Materiais Biocompatíveis/química
3.
Biotechnol Bioeng ; 114(12): 2947-2954, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28840937

RESUMO

The archaeon Pyrococcus furiosus is emerging as a metabolic engineering platform for production of fuels and chemicals, such that more must be known about this organism's characteristics in bioprocessing contexts. Its ability to grow at temperatures from 70 to greater than 100°C and thereby avoid contamination, offers the opportunity for long duration, continuous bioprocesses as an alternative to batch systems. Toward that end, we analyzed the transcriptome of P. furiosus to reveal its metabolic state during different growth modes that are relevant to bioprocessing. As cells progressed from exponential to stationary phase in batch cultures, genes involved in biosynthetic pathways important to replacing diminishing supplies of key nutrients and genes responsible for the onset of stress responses were up-regulated. In contrast, during continuous culture, the progression to higher dilution rates down-regulated many biosynthetic processes as nutrient supplies were increased. Most interesting was the contrast between batch exponential phase and continuous culture at comparable growth rates (∼0.4 hr-1 ), where over 200 genes were differentially transcribed, indicating among other things, N-limitation in the chemostat and the onset of oxidative stress. The results here suggest that cellular processes involved in carbon and electron flux in P. furiosus were significantly impacted by growth mode, phase and rate, factors that need to be taken into account when developing successful metabolic engineering strategies.


Assuntos
Proteínas Arqueais/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Pyrococcus furiosus/crescimento & desenvolvimento , Pyrococcus furiosus/metabolismo , Transcriptoma/fisiologia
4.
Biotechnol Bioeng ; 104(5): 947-56, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19585523

RESUMO

In the industrial processing of starch for sugar syrup and ethanol production, a liquefaction step is involved where starch is initially solubilized at high temperature and partially hydrolyzed with a thermostable and thermoactive alpha-amylase. Most amylases require calcium as a cofactor for their activity and stability, therefore calcium, along with the thermostable enzyme, are typically added to the starch mixture during enzymatic liquefaction, thereby increasing process costs. An attractive alternative would be to produce the enzyme directly in the tissue to be treated. In a proof of concept study, tobacco cell cultures were used as model system to test in planta production of a hyperthermophilic alpha-amylase from Thermotoga maritima. While comparable biochemical properties to recombinant production in Escherichia coli were observed, thermostability of the plant-produced alpha-amylase benefited significantly from high intrinsic calcium levels in the tobacco cells. The plant-made enzyme retained 85% of its initial activity after 3 h incubation at 100 degrees C, whereas the E. coli-produced enzyme was completely inactivated after 30 min under the same conditions. The addition of Ca(2+) or plant cell extracts from tobacco and sweetpotato to the E. coli-produced enzyme resulted in a similar stabilization, demonstrating the importance of a calcium-rich environment for thermostability, as well as the advantage of producing this enzyme directly in plant cells where calcium is readily available.


Assuntos
Cálcio/farmacologia , Coenzimas/farmacologia , Nicotiana/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Thermotoga maritima/enzimologia , alfa-Amilases/química , alfa-Amilases/metabolismo , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Temperatura Alta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Thermotoga maritima/genética , Nicotiana/genética , alfa-Amilases/genética
5.
FEMS Microbiol Ecol ; 68(2): 173-81, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19309315

RESUMO

Quorum sensing provides the basis for coordinating community-wide, microbial behaviors in many mesophilic bacteria. However, little attention has been directed toward the possibility that such phenomena occur in extremely thermal microbial environments. Despite the absence of luxS in hyperthermophile genomes, autoinducer-2 (AI-2), a boronated furanone and proposed 'universal' interspecies mesophilic bacterial communication signal, could be formed by Thermotoga maritima and Pyrococcus furiosus through a combination of biotic and abiotic reaction steps. AI-2 did not, however, induce any detectable quorum-sensing phenotypes in these organisms, although transcriptome-based evidence of an AI-2-induced stress response was observed in T. maritima. The significance, if any, of AI-2 in hydrothermal habitats is not yet clear. Nevertheless, these results show the importance of considering environmental factors, in this case high temperatures, as abiotic causative agents of biochemical and microbiological phenomena.


Assuntos
Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Homosserina/análogos & derivados , Temperatura Alta , Pyrococcus furiosus/metabolismo , Thermotoga maritima/metabolismo , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Cromatografia Gasosa-Espectrometria de Massas , Regulação Bacteriana da Expressão Gênica , Homosserina/biossíntese , Lactonas , Pyrococcus furiosus/genética , Percepção de Quorum , Thermotoga maritima/genética
6.
Metab Eng ; 10(6): 394-404, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18647659

RESUMO

Hydrothermal microbiotopes are characterized by the consumption and production of molecular hydrogen. Heterotrophic hyperthermophilic microorganisms (growth T(opt)> or =80 degrees C) actively participate in the production of H(2) in these environments through the fermentation of peptides and carbohydrates. Hyperthermophiles have been shown to approach the theoretical (Thauer) limit of 4 mol of H(2) produced per mole of glucose equivalent consumed, albeit at lower volumetric productivities than observed for mesophilic bacteria, especially enterics and clostridia. Potential advantages for biohydrogen production at elevated temperatures include fewer metabolic byproducts formed, absence of catabolic repression for growth on heterogeneous biomass substrates, and reduced loss of H(2) through conversion to H(2)S and CH(4) by mesophilic consortia containing sulfate reducers and methanogens. To fully exploit the use of these novel microorganisms and their constituent hydrogenases for biohydrogen production, development of versatile genetic systems and improvements in current understanding of electron flux from fermentable substrates to H(2) in hyperthermophiles are needed.


Assuntos
Archaea/metabolismo , Fontes de Energia Bioelétrica , Sulfeto de Hidrogênio/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Temperatura Alta
7.
Appl Environ Microbiol ; 74(4): 1281-3, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18156337

RESUMO

Bioinformatics analysis and transcriptional response information for Pyrococcus furiosus grown on alpha-glucans led to the identification of a novel isomaltase (PF0132) representing a new glycoside hydrolase (GH) family, a novel GH57 beta-amylase (PF0870), and an extracellular starch-binding protein (1,141 amino acids; PF1109-PF1110), in addition to several other putative alpha-glucan-processing enzymes.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Fases de Leitura Aberta/genética , Pyrococcus furiosus/enzimologia , alfa-Glucosidases/genética , Biologia Computacional , Genômica/métodos , Pyrococcus furiosus/genética , beta-Amilase/genética
8.
Appl Environ Microbiol ; 73(21): 6842-53, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17827328

RESUMO

Glycoside linkage (cellobiose versus maltose) dramatically influenced bioenergetics to different extents and by different mechanisms in the hyperthermophilic archaeon Pyrococcus furiosus when it was grown in continuous culture at a dilution rate of 0.45 h(-1) at 90 degrees C. In the absence of S(0), cellobiose-grown cells generated twice as much protein and had 50%-higher specific H(2) generation rates than maltose-grown cultures. Addition of S(0) to maltose-grown cultures boosted cell protein production fourfold and shifted gas production completely from H(2) to H(2)S. In contrast, the presence of S(0) in cellobiose-grown cells caused only a 1.3-fold increase in protein production and an incomplete shift from H(2) to H(2)S production, with 2.5 times more H(2) than H(2)S formed. Transcriptional response analysis revealed that many genes and operons known to be involved in alpha- or beta-glucan uptake and processing were up-regulated in an S(0)-independent manner. Most differentially transcribed open reading frames (ORFs) responding to S(0) in cellobiose-grown cells also responded to S(0) in maltose-grown cells; these ORFs included ORFs encoding a membrane-bound oxidoreductase complex (MBX) and two hypothetical proteins (PF2025 and PF2026). However, additional genes (242 genes; 108 genes were up-regulated and 134 genes were down-regulated) were differentially transcribed when S(0) was present in the medium of maltose-grown cells, indicating that there were different cellular responses to the two sugars. These results indicate that carbohydrate characteristics (e.g., glycoside linkage) have a major impact on S(0) metabolism and hydrogen production in P. furiosus. Furthermore, such issues need to be considered in designing and implementing metabolic strategies for production of biofuel by fermentative anaerobes.


Assuntos
Glicosídeos/metabolismo , Hidrogênio/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/fisiologia , Enxofre/metabolismo , Archaea , Fenômenos Químicos , Química , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Temperatura Alta , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Pyrococcus furiosus/genética
10.
J Bacteriol ; 188(6): 2115-25, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16513741

RESUMO

Pyrococcus furiosus utilizes starch and its degradation products, such as maltose, as primary carbon sources, but the pathways by which these alpha-glucans are processed have yet to be defined. For example, its genome contains genes proposed to encode five amylolytic enzymes (including a cyclodextrin glucanotransferase [CGTase] and amylopullulanase), as well as two transporters for maltose and maltodextrins (Mal-I and Mal-II), and a range of intracellular enzymes have been purified that reportedly metabolize maltodextrins and maltose. However, precisely which of these enzymes are involved in starch processing is not clear. In this study, starch metabolism in P. furiosus was examined by biochemical analyses in conjunction with global transcriptional response data for cells grown on a variety of glucans. In addition, DNA sequencing led to the correction of two key errors in the genome sequence, and these change the predicted properties of amylopullulanase (now designated PF1935*) and CGTase (PF0478*). Based on all of these data, a pathway is proposed that is specific for starch utilization that involves one transporter (Mal-II [PF1933 to PF1939]) and only three enzymes, amylopullulanase (PF1935*), 4-alpha-glucanotransferase (PF0272), and maltodextrin phosphorylase (PF1535). Their expression is upregulated on starch, and together they generate glucose and glucose-1-phosphate, which then feed into the novel glycolytic pathway of this organism. In addition, the results indicate that several hypothetical proteins encoded by three gene clusters are also involved in the transport and processing of alpha-glucan substrates by P. furiosus.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica em Archaea , Pyrococcus furiosus/metabolismo , Amido/metabolismo , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , DNA Arqueal/química , DNA Arqueal/genética , Glucose/metabolismo , Glucofosfatos/metabolismo , Glucosiltransferases/genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Glicosídeo Hidrolases/genética , Proteínas de Transporte de Monossacarídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Pyrococcus furiosus/genética , Análise de Sequência de DNA , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA