Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
iScience ; 27(5): 109573, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660409

RESUMO

We examined from a large exploratory study cohort of COVID-19 patients (N = 549) a validated panel of neutrophil extracellular traps (NETs) markers in different categories of disease severity. Neutrophil elastase (NE), myeloperoxidase (MPO), and circulating nuclear DNA (cir-nDNA) levels in plasma were seen to gradually and significantly (p < 0.0001) increase with the disease severity: mild (3.7, 48.9, and 15.8 ng/mL, respectively); moderate (9.8, 77.5, and 27.7 ng/mL, respectively); severe (11.7, 99.5, and 29.0 ng/mL, respectively); and critical (13.1, 110.2, and 46.0 ng/mL, respectively); and are also statistically different with healthy individuals (N = 140; p < 0.0001). All observations made in relation to the Delta variant-infected patients are in line with Omicron-infected patients. We unexpectedly observed significantly higher levels of NETs in asymptomatic individuals as compared to healthy subjects (p < 0.0001). Moreover, the balance of cir-nDNA and circulating mitochondrial DNA level was affected in COVID-19 infected patients attesting to mitochondrial dysfunction.

2.
Semin Cancer Biol ; 97: 104-123, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38029865

RESUMO

In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia , Hipóxia/genética , Hipóxia/metabolismo , Tolerância Imunológica/genética , Hipóxia Celular/genética , Microambiente Tumoral
3.
iScience ; 26(10): 108059, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37854701

RESUMO

Extensive metabolic heterogeneity in breast cancers has limited the deployment of metabolic therapies. To enable patient stratification, we studied the metabolic landscape in breast cancers (∼3000 patients combined) and identified three subtypes with increasing degrees of metabolic deregulation. Subtype M1 was found to be dependent on bile-acid biosynthesis, whereas M2 showed reliance on methionine pathway, and M3 engaged fatty-acid, nucleotide, and glucose metabolism. The extent of metabolic alterations correlated strongly with tumor aggressiveness and patient outcome. This pattern was reproducible in independent datasets and using in vivo tumor metabolite data. Using machine-learning, we identified robust and generalizable signatures of metabolic subtypes in tumors and cell lines. Experimental inhibition of metabolic pathways in cell lines representing metabolic subtypes revealed subtype-specific sensitivity, therapeutically relevant drugs, and promising combination therapies. Taken together, metabolic stratification of breast cancers can thus aid in predicting patient outcome and designing precision therapies.

4.
Front Immunol ; 14: 1183668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334356

RESUMO

Background: Melanoma is a lethal skin cancer, and the risk of developing it is increased by exposure to ultraviolet (UV) radiation. The production of cytokines such as interleukin-15 (IL-15), induced by the exposure of skin cells to UV rays, could also promote melanoma development. The aim of this study is to investigate the possible role of Interleukin-15/Interleukin-15 Receptor α (IL-15/IL-15Rα) complexes in melanoma development. Methods: The expression of IL-15/IL-15Rα complexes by melanoma cells was evaluated both ex vivo and in vitro by tissue microarray, PCR, and flow cytometry. The presence of the soluble complex (sIL-15/IL-15Rα) in the plasma of metastatic melanoma patients was detected using an ELISA assay. Subsequently, we investigated the impact of natural killer (NK) cell activation after rIL-2 starvation followed by exposure to the sIL-15/IL-15Rα complex. Finally, by analyzing public datasets, we studied the correlation between IL-15 and IL-15Rα expressions and melanoma stage, NK and T-cell markers, and overall survival (OS). Results: Analysis of a melanoma tissue microarray shows a significant increase in the number of IL-15+ tumor cells from the benign nevi to metastatic melanoma stages. Metastatic melanoma cell lines express a phorbol-12-myristate-13-acetate (PMA)-cleavable membrane-bound IL-15 (mbIL-15), whereas cultures from primary melanomas express a PMA-resistant isoform. Further analysis revealed that 26% of metastatic patients present with consistently high plasmatic levels of sIL-15/IL-15Rα. When the recombinant soluble human IL-15/IL-15Rα complex is added to briefly starved rIL-2-expanded NK cells, these cells exhibit strongly reduced proliferation and levels of cytotoxic activity against K-562 and NALM-18 target cells. The analysis of public gene expression datasets revealed that high IL-15 and IL-15Rα intra-tumoral production correlates with the high levels of expression of CD5+ and NKp46+ (T and NK markers) and significantly correlates with a better OS in stages II and III, but not in stage IV. Conclusions: Membrane-bound and secreted IL-15/IL-15Rα complexes are continuously present during progression in melanoma. It is notable that, although IL-15/IL-15Rα initially promoted the production of cytotoxic T and NK cells, at stage IV promotion of the development of anergic and dysfunctional cytotoxic NK cells was observed. In a subgroup of melanoma metastatic patients, the continuous secretion of high amounts of the soluble complex could represent a novel NK cell immune escape mechanism.


Assuntos
Antineoplásicos , Melanoma , Humanos , Linhagem Celular Tumoral , Interleucina-15/metabolismo , Subunidade alfa de Receptor de Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Células Matadoras Naturais , Melanoma/metabolismo
5.
Front Cell Dev Biol ; 11: 1095419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968212

RESUMO

Hypoxia afflicts the microenvironment of solid tumors fueling malignancy. We investigated the impact of long hypoxia exposure on transcriptional remodeling, tumor mutational burden (TMB), and genomic instability of cancer cells that were grouped based on their inherent sensitivity or resistance to hypoxia. A hypoxia score was used as a metric to distinguish between the most hypoxia-sensitive (hypoxia high (HH)), and most resistant (hypoxia low (HL)) cancer cells. By applying whole exome sequencing and microarray analysis, we showed that the HH group was indeed more sensitive to hypoxia, having significantly higher TMB (p = 0.03) and copy number losses (p = 0.03), as well as a trend of higher transcriptional response. Globally cells adapted by decreasing expression of genes involved in metabolism, proliferation, and protein maturation, and increasing alternative splicing. They accumulated mutations, especially frameshift insertions, and harbored increased copy number alterations, indicating increased genomic instability. Cells showing highest TMB simultaneously experienced a significant downregulation of DNA replication and repair and chromosomal maintenance pathways. A sixteen-gene common response to chronic hypoxia was put forth, including genes regulating angiogenesis and proliferation. Our findings show that chronic hypoxia enables survival of tumor cells by metabolic reprogramming, modulating proliferation, and increasing genomic instability. They additionally highlight key adaptive pathways that can potentially be targeted to prevent cancer cells residing in chronically hypoxic tumor areas from thriving.

6.
Front Oncol ; 13: 1059441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969009

RESUMO

The development of new therapeutic strategies is on the increase for prostate cancer stem cells, owing to current standardized therapies for prostate cancer, including chemotherapy, androgen deprivation therapy (ADT), radiotherapy, and surgery, often failing because of tumor relapse ability. Ultimately, tumor relapse develops into advanced castration-resistant prostate cancer (CRPC), which becomes an irreversible and systemic disease. Hence, early identification of the intracellular components and molecular networks that promote prostate cancer is crucial for disease management and therapeutic intervention. One of the potential therapeutic methods for aggressive prostate cancer is to target prostate cancer stem cells (PCSCs), which appear to be a primary focal point of cancer metastasis and recurrence and are resistant to standardized therapies. PCSCs have also been documented to play a major role in regulating tumorigenesis, sphere formation, and the metastasis ability of prostate cancer with their stemness features. Therefore, the current review highlights the origin and identification of PCSCs and their role in anti-androgen resistance, as well as stemness-related signaling pathways. In addition, the review focuses on the current advanced therapeutic strategies for targeting PCSCs that are helping to prevent prostate cancer initiation and progression, such as microRNAs (miRNAs), nanotechnology, chemotherapy, immunotherapy, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing system, and photothermal ablation (PTA) therapy.

7.
Cancers (Basel) ; 15(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831579

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients. Hypoxia and its downstream effectors have been implicated in immune resistance and could be contributing to the lack of response to immunotherapy experienced by patients with PDAC. Paradoxically, increasing evidence has shown hypoxia to augment genomic instability and mutagenesis in cancer, suggesting that hypoxic tumor cells could have increased production of neoantigens that can potentially enable their clearance by cytotoxic immune cells. Strategies aimed at relieving this condition have been on the rise, and one such approach opts for normalizing the tumor vasculature to reverse hypoxia and its downstream support of tumor pathogenesis. An important consideration for the successful implementation of such strategies in the clinic is that not all PDACs are equally hypoxic, therefore hypoxia-detection approaches should be integrated to enable optimal patient selection for achieving improved patient outcomes.

8.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201462

RESUMO

von Hippel-Lindau (VHL) disease, due to mutations of the tumor suppressor VHL gene, is a rare hereditary syndrome with a high risk of developing clear cell renal cell carcinoma (ccRCC). We asked whether the VHL-C162F mutation interferes with proliferation, migration, healing and forming colony ability by using wild-type VHL (WT VHL) and VHL-C162F reconstituted cells. We then analyzed the in vitro impact of the sunitinib treatment on VHL-C162F cells. We showed that VHL-C162F mutations have no impact on cell morphology, colony formation and migration ability but confer a significant higher healing ability than in WT VHL cells. RNA sequencing analysis revealed that VHL-C162F mutation upregulates genes involved in hypoxia and epithelial mesenchymal transition (EMT) pathways by comparison with VHL WT cells. We next showed a decrease in healing ability in VHL-C162F cells depleting on ZHX2, an oncogenic driver of ccRCC, highlighting the potential involvement of ZHX2 in aggressiveness of the VHL-C162F cells. Moreover, we found that sunitinib treatment inhibits ZHX2 expression and induces a reduced proliferation correlating with downregulation of P-ERK. Sunitinib treatment also conferred a more mesenchymal profile to VHL-C162F cells with significant downregulation of E-cadherin and upregulation of N-cadherin, Slug and AXL. Sunitinib therapy may therefore promote disease progression in VHL-C162F patients.

10.
Cancers (Basel) ; 14(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892818

RESUMO

The recent trend in 3D cell modeling has fostered the emergence of a wide range of models, addressing very distinct goals ranging from the fundamental exploration of cell-cell interactions to preclinical assays for personalized medicine. It is clear that no single model will recapitulate the complexity and dynamics of in vivo situations. The key is to define the critical points, achieve a specific goal and design a model where they can be validated. In this report, we focused on cancer progression. We describe our model which is designed to emulate breast carcinoma progression during the invasive phase. We chose to provide topological clues to the target cells by growing them on microsupports, favoring a polarized epithelial organization before they are embedded in a 3D matrix. We then watched for cell organization and differentiation for these models, adding stroma cells then immune cells to follow and quantify cell responses to drug treatment, including quantifying cell death and viability, as well as morphogenic and invasive properties. We used model cell lines including Comma Dß, MCF7 and MCF10A mammary epithelial cells as well as primary breast cancer cells from patient-derived xenografts (PDX). We found that fibroblasts impacted cell response to Docetaxel and Palbociclib. We also found that NK92 immune cells could target breast cancer cells within the 3D configuration, providing quantitative monitoring of cell cytotoxicity. We also tested several sources for the extracellular matrix and selected a hyaluronan-based matrix as a promising alternative to mouse tumor basement membrane extracts for primary human cancer cells. Overall, we validated a new 3D model designed for breast cancer for preclinical use in personalized medicine.

11.
Front Immunol ; 13: 880810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795658

RESUMO

Almost all solid tumors display hypoxic areas in the tumor microenvironment associated with therapeutic failure. It is now well established that the abnormal growth of malignant solid tumors exacerbates their susceptibility to hypoxia. Therefore, targeting hypoxia remains an attractive strategy to sensitize tumors to various therapies. Tumor cell adaptions to hypoxia are primarily mediated by hypoxia-inducible factor-1 alpha (HIF-1α). Sensing hypoxia by HIF-1α impairs the apoptotic potential of tumor cells, thus increasing their proliferative capacity and contributing to the development of a chaotic vasculature in the tumor microenvironment. Therefore, in addition to the negative impact of hypoxia on tumor response to chemo- and radio-therapies, hypoxia has also been described as a major hijacker of the tumor response by impairing the tumor cell susceptibility to immune cell killing. This review is not intended to provide a comprehensive overview of the work published by several groups on the multiple mechanisms by which hypoxia impairs the anti-tumor immunity and establishes the immunosuppressive tumor microenvironment. There are several excellent reviews highlighting the value of targeting hypoxia to improve the benefit of immunotherapy. Here, we first provide a brief overview of the mechanisms involved in the establishment of hypoxic stress in the tumor microenvironment. We then discuss our recently published data on how targeting hypoxia, by deleting a critical domain in HIF-1α, contributes to the improvement of the anti-tumor immune response. Our aim is to support the current dogma about the relevance of targeting hypoxia in cancer immunotherapy.


Assuntos
Imunoterapia , Neoplasias , Humanos , Hipóxia/terapia , Imunossupressores , Neoplasias/terapia , Síndrome , Microambiente Tumoral
12.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743294

RESUMO

The role of autophagy in lung cancer cells exposed to waterpipe smoke (WPS) is not known. Because of the important role of autophagy in tumor resistance and progression, we investigated its relationship with WP smoking. We first showed that WPS activated autophagy, as reflected by LC3 processing, in lung cancer cell lines. The autophagy response in smokers with lung adenocarcinoma, as compared to non-smokers with lung adenocarcinoma, was investigated further using the TCGA lung adenocarcinoma bulk RNA-seq dataset with the available patient metadata on smoking status. The results, based on a machine learning classification model using Random Forest, indicate that smokers have an increase in autophagy-activating genes. Comparative analysis of lung adenocarcinoma molecular signatures in affected patients with a long-term active exposure to smoke compared to non-smoker patients indicates a higher tumor mutational burden, a higher CD8+ T-cell level and a lower dysfunction level in smokers. While the expression of the checkpoint genes tested-PD-1, PD-L1, PD-L2 and CTLA-4-remains unchanged between smokers and non-smokers, B7-1, B7-2, IDO1 and CD200R1 were found to be higher in non-smokers than smokers. Because multiple factors in the tumor microenvironment dictate the success of immunotherapy, in addition to the expression of immune checkpoint genes, our analysis explains why patients who are smokers with lung adenocarcinoma respond better to immunotherapy, even though there are no relative differences in immune checkpoint genes in the two groups. Therefore, targeting autophagy in lung adenocarcinoma patients, in combination with checkpoint inhibitor-targeted therapies or chemotherapy, should be considered in smoker patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Fumar Cachimbo de Água , Adenocarcinoma de Pulmão/genética , Autofagia/genética , Antígeno B7-H1/genética , Genômica , Humanos , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral/genética
13.
Front Immunol ; 13: 869676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572601

RESUMO

The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand GAS6, AXL regulates cell signaling cascades and cellular communication between various components of the tumor microenvironment, including cancer cells, endothelial cells, and immune cells. Converging evidence points to AXL as an attractive molecular target to overcome therapy resistance and immunosuppression, supported by the potential of AXL inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent role of AXL in regulating cancer progression, with particular attention to its effects on anti-tumor immune response and resistance to ICI. We discuss future directions with the aim to understand better the complex role of AXL and TAM receptors in cancer and the potential value of this knowledge and targeted inhibition for the benefit of cancer patients.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Evasão Tumoral , Células Endoteliais/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Microambiente Tumoral , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
14.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35640928

RESUMO

BACKGROUND: The phase II NIVOREN GETUG-AFU 26 study reported safety and efficacy of nivolumab in patients with metastatic clear cell renal cell carcinoma (m-ccRCC) in a 'real-world setting'. We conducted a translational-research program to determine whether specific circulating immune-cell populations and/or soluble factors at baseline were predictive of clinical outcomes in patients with m-ccRCC treated with nivolumab within the NIVOREN study. METHODS: Absolute numbers of 106 circulating immune-cell populations were prospectively analyzed in patients treated at a single institution within the NIVOREN trial with available fresh-whole-blood, using dry formulation panels for multicolor flow cytometry. In addition, a panel of 14 predefined soluble factors was quantified for each baseline plasma sample using the Meso-Scale-Discovery immunoassay. The remaining patients with available plasma sample were used as a validation cohort for the soluble factor quantification analysis. Tumor immune microenvironment characterization of all patients included in the translational program of the study was available. The association of blood and tissue-based biomarkers, with overall survival (OS), progression-free survival (PFS) and response was analyzed. RESULTS: Among the 44 patients, baseline unswitched memory B cells (NSwM B cells) were enriched in responders (p=0.006) and associated with improved OS (HR=0.08, p=0.002) and PFS (HR=0.54, p=0.048). Responders were enriched in circulating T follicular helper (Tfh) (p=0.027) and tertiary lymphoid structures (TLS) (p=0.043). Circulating NSwM B cells positively correlated with Tfh (r=0.70, p<0.001). Circulating NSwM B cells correlated positively with TLS and CD20 +B cells at the tumor center (r=0.59, p=0.044, and r=0.52, p=0.033) and inversely correlated with BCA-1/CXCL13 and BAFF (r=-0.55 and r=-0.42, p<0.001). Tfh cells also inversely correlated with BCA-1/CXCL13 (r=-0.61, p<0.001). IL-6, BCA-1/CXCL13 and BAFF significantly associated with worse OS in the discovery (n=40) and validation cohorts (n=313). CONCLUSION: We report the first fresh blood immune-monitoring of patients with m-ccRCC treated with nivolumab. Baseline blood concentration of NSwM B cells was associated to response, PFS and OS in patients with m-ccRCC treated with nivolumab. BCA-1/CXCL13 and BAFF, inversely correlated to NSwM B cells, were both associated with worse OS in discovery and validation cohorts. Our data confirms a role for B cell subsets in the response to immune checkpoint blockade therapy in patients with m-ccRCC. Further studies are needed to confirm these findings.


Assuntos
Antineoplásicos Imunológicos , Carcinoma de Células Renais , Neoplasias Renais , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/patologia , Células B de Memória , Nivolumabe/uso terapêutico , Microambiente Tumoral
16.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418483

RESUMO

BACKGROUND: Cancer stem cells (CSC) define a population of rare malignant cells endowed with 'stemness' properties, such as self-renewing, multipotency and tumorigenicity. They are responsible for tumor initiation and progression, and could be associated with resistance to immunotherapies by negatively regulating antitumor immune response and acquiring molecular features enabling escape from CD8 T-cell immunity. However, the immunological hallmarks of human lung CSC and their potential interactions with resident memory T (TRM) cells within the tumor microenvironment have not been investigated. METHODS: We generated a non-small cell lung cancer model, including CSC line and clones, and autologous CD8+CD103+ TRM and CD8+CD103- non-TRM clones, to dissect out immune properties of CSC and their susceptibility to specific T-cell-mediated cytotoxic activity. RESULTS: Unlike their parental tumor cells, lung CSC are characterized by the initiation of an epithelial-to-mesenchymal transition program defined by upregulation of the SNAIL1 transcription factor and downregulation of phosphorylated-GSK-3ß and cell surface E-cadherin. Acquisition of a CSC profile results in partial resistance to TRM-cell-mediated cytotoxicity, which correlates with decreased surface expression of the CD103 ligand E-cadherin and human leukocyte antigen-A2-neoepitope complexes. On the other hand, CSC gained expression of intercellular adhesion molecule (ICAM)-1 and thereby sensitivity to leukocyte function-associated antigen (LFA)-1-dependent non-TRM-cell-mediated killing. Cytotoxicity is inhibited by anti-ICAM-1 and anti-major histocompatibility complex class I neutralizing antibodies further emphasizing the role of LFA-1/ICAM-1 interaction in T-cell receptor-dependent lytic function. CONCLUSION: Our data support the rational design of immunotherapeutic strategies targeting CSC to optimize their responsiveness to local CD8+CD103+ TRM cells for more efficient anticancer treatments.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfócitos T CD8-Positivos , Caderinas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Memória Imunológica , Pulmão , Linfócitos do Interstício Tumoral , Células-Tronco Neoplásicas , Microambiente Tumoral
17.
Oncol Rep ; 47(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35234267

RESUMO

Pharmacological reactivation of tumor­suppressor protein p53 has acted as a promising strategy for more than 50% of human cancers that carry a non­functional mutant p53 (mutp53). p53 plays a critical role in preserving genomic integrity and DNA fidelity through numerous biological processes, including cell cycle arrest, DNA repair, senescence and apoptosis. By contrast, non­functional mutp53 compromises the aforementioned genome stabilizing mechanisms through gain of function, thereby increasing genomic instability in human cancers. Restoring the functional activity of p53 using both genetic and pharmacological approaches has gained prominence in targeting p53­mutated tumors. Thus, the present study aimed to investigate the reactivation of p53 in DNA repair mechanisms and the maintenance of genomic stability using PRIMA­1MET/APR­246 small molecules, in both MDA­MB­231 and MCF­7 breast cancer cell lines, which carry mutp53 and wild­type p53, respectively. Results of the present study revealed that reactivation of p53 through APR­246 led to an increase in the functional activity of DNA repair. Prolonged treatment of MDA­MB­231 cells with APR­246 in the presence of cisplatin led to a reduction in mutational accumulation, compared with cells treated with cisplatin alone. These findings demonstrated that APR­246 may act as a promising small molecule to control the genomic instability in p53­mutated tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Instabilidade Genômica , Humanos , Mutação , Neoplasias/patologia , Quinuclidinas/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Front Immunol ; 13: 828875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211123

RESUMO

Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.


Assuntos
Hipóxia/imunologia , Imunomodulação , Neoplasias/imunologia , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Aprendizado de Máquina , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
19.
Pharmacol Ther ; 231: 107986, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34481812

RESUMO

Tumor-associated macrophages (TAM) plasticity and diversity are both essential hallmarks of the monocyte-macrophage lineage and the tumor-derived inflammation. TAM exemplify the perfect adaptable cell with dynamic phenotypic modifications that reflect changes in their functional polarization status. Under several tumor microenvironment (TME)-related cues, TAM shift their polarization, hence promoting or halting cancer progression. Immune checkpoint inhibitors (ICI) displayed unprecedented clinical responses in various refractory cancers; but only approximately a third of patients experienced durable responses. It is, therefore, crucial to enhance the response rate of immunotherapy. Several mechanisms of resistance to ICI have been elucidated including TAM role with its essential immunosuppressive functions that reduce both anti-tumor immunity and the subsequent ICI efficacy. In the past few years, thorough research has led to a better understanding of TAM biology and innovative approaches can now be adapted through targeting macrophages' recruitment axis as well as TAM activation and polarization status within the TME. Some of these therapeutic strategies are currently being evaluated in several clinical trials in association with ICI agents. This combination between TAM modulation and ICI allows targeting TAM intrinsic immunosuppressive functions and tumor-promoting factors as well as overcoming ICI resistance. Hence, such strategies, with a better understanding of the mechanisms driving TAM modulation, may have the potential to optimize ICI efficacy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA