Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717135

RESUMO

Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity biotinylation method targeting the RNA and proteins constituents. The method that we termed antibody-mediated proximity labelling coupled to mass spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X chromosome in Drosophila. This analysis identified a number of known RNA-binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.


Assuntos
Cromatina , Espectrometria de Massas , RNA , Animais , Cromatina/metabolismo , Cromatina/química , RNA/metabolismo , RNA/química , Espectrometria de Massas/métodos , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Biotinilação , Centrômero/metabolismo , Anticorpos/metabolismo , Anticorpos/química , Cromossomo X/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Coloração e Rotulagem/métodos
2.
PLoS Genet ; 17(8): e1009744, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424906

RESUMO

Postzygotic isolation by genomic conflict is a major cause for the formation of species. Despite its importance, the molecular mechanisms that result in the lethality of interspecies hybrids are still largely unclear. The genus Drosophila, which contains over 1600 different species, is one of the best characterized model systems to study these questions. We showed in the past that the expression levels of the two hybrid incompatibility factors Hmr and Lhr diverged in the two closely related Drosophila species, D. melanogaster and D. simulans, resulting in an increased level of both proteins in interspecies hybrids. The overexpression of the two proteins also leads to mitotic defects, a misregulation in the expression of transposable elements and decreased fertility in pure species. In this work, we describe a distinct six subunit protein complex containing HMR and LHR and analyse the effect of Hmr mutations on complex integrity and function. Our experiments suggest that HMR needs to bring together components of centromeric and pericentromeric chromatin to fulfil its physiological function and to cause hybrid male lethality.


Assuntos
Proteínas de Drosophila/genética , Isolamento Reprodutivo , Animais , Centrômero/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila simulans/genética , Drosophila simulans/metabolismo , Genes Letais/genética , Especiação Genética , Hibridização Genética/genética , Reprodução/genética
3.
Genes Dev ; 33(9-10): 550-564, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30842216

RESUMO

Epigenetic modifications can maintain or alter the inherent symmetry of the nucleosome. However, the mechanisms that deposit and/or propagate symmetry or asymmetry are not understood. Here we report that yeast Set1C/COMPASS (complex of proteins associated with Set1) is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. Mutation of the dimer interface to make Set1C monomeric abolished H3K4me3 on most promoters. The most active promoters, particularly those involved in the oxidative phase of the yeast metabolic cycle, displayed H3K4me2, which is normally excluded from active promoters, and a subset of these also displayed H3K4me3. In wild-type yeast, deletion of the sole H3K4 demethylase, Jhd2, has no effect. However, in monomeric Set1C yeast, Jhd2 deletion increased H3K4me3 levels on the H3K4me2 promoters. Notably, the association of Set1C with the elongating polymerase was not perturbed by monomerization. These results imply that symmetrical H3K4 methylation is an embedded consequence of Set1C dimerism and that Jhd2 demethylates asymmetric H3K4me3. Consequently, rather than methylation and demethylation acting in opposition as logic would suggest, a dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. This presents a new paradigm for the establishment of epigenetic detail.


Assuntos
Epigênese Genética/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Desmetilação , Dimerização , Deleção de Genes , Histonas/metabolismo , Metilação , Mutagênese , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética
4.
Behav Brain Res ; 218(2): 315-24, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21074573

RESUMO

Transplants, besides providing neural replacement, also stimulate host regeneration, which could serve as a powerful means to establish functional recovery in CNS insults. Earlier, we have reported the H3-GFP transplant mediated recovery of cognitive functions in the ventral subicular lesioned rats. In the present study, we demonstrate the efficacy of a non-neural fibroblast transplants in mediating host regeneration and functional recovery in ventral subicular lesioned rats. Adult male Wistar rats were lesioned with ibotenic acid in the ventral subiculum (VSL) and were transplanted with NIH-3T3 fibroblast cells into CA1 region of the hippocampus. Ventral subicular lesioning impaired the spatial task performances in rats and produced considerable degree of dendritic atrophy of the hippocampal pyramidal neurons. Two months following transplantation, the transplants were seen in the dentate gyrus and expressed BDNF and bFGF. Further, the VSL rats with fibroblast transplants showed enhanced expression of BDNF in the hippocampus and enhanced dendritic branching and increased spine density in the CA1 hippocampal pyramidal neurons. Transplantation of fibroblast cells also helped to establish functional recovery and the rats with transplants showed enhanced spatial learning performances. We attribute the recovery of cognitive functions to the graft mediated host regeneration, although the mechanisms of functional recovery remain to be elucidated.


Assuntos
Hipocampo/patologia , Hipocampo/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Células NIH 3T3/transplante , Regeneração/fisiologia , Análise de Variância , Animais , Atrofia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipocampo/metabolismo , Ácido Ibotênico , Imuno-Histoquímica , Masculino , Camundongos , Neurônios/patologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia
5.
Behav Neurosci ; 123(6): 1197-217, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20001104

RESUMO

We have demonstrated in our previous studies that ventral subicular lesion induces neurodegeneration of the hippocampus and produces cognitive impairment in rats. In the present study, the efficacy of transplanted green fluorescent protein (GFP)-labeled hippocampal cell line (H3-GFP) cells in establishing functional recovery in ventral subicular lesioned rats has been evaluated. The survival of H3-GFP transplants and their ability to express trophic factors in vivo were also investigated. Adult male Wistar rats were subjected to selective lesioning of ventral subiculum and were transplanted with H3-GFP cells into the cornu ammonis 1 (CA1) hippocampus. The transplants settled mainly in the dentate gyrus and expressed neurotrophic factors, brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF). The ventral subicular lesioned (VSL) rats with H3-GFP transplants showed enhanced expression of BDNF in the hippocampus and performed well in eight-arm radial maze and Morris water maze tasks. The VSL rats without hippocampal transplants continued to show cognitive impairment in task learning. The present study demonstrated the H3-GFP transplants mediated recovery of cognitive functions in VSL rats. Our study supports the notion of graft meditated host regeneration and functional recovery through trophic support, although these mechanisms require further investigation.


Assuntos
Transplante de Células , Hipocampo/citologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Análise de Variância , Animais , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Contagem de Células , Linhagem Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Imunofluorescência , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Processamento de Imagem Assistida por Computador , Masculino , Microscopia Confocal , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Comportamento Espacial/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA