Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 81(20): 5311-5324, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380634

RESUMO

No targeted treatments are currently approved for HER2 exon 20 insertion-mutant lung adenocarcinoma patients. Mobocertinib (TAK-788) is a potent irreversible tyrosine kinase inhibitor (TKI) designed to target human epidermal growth factor receptor 2 (HER2/ERBB2) exon 20 insertion mutations. However, the function of mobocertinib on HER2 exon 20 insertion-mutant lung cancer is still unclear. Here we conducted systematic characterization of preclinical models to understand the activity profile of mobocertinib against HER2 exon 20 insertions. In HER2 exon 20 insertion-mutant cell lines, the IC50 of mobocertinib was higher than poziotinib and comparable with or slightly lower than afatinib, neratinib, and pyrotinib. Mobocertinib had the lowest HER2 exon 20 insertion IC50/wild-type (WT) EGFR IC50 ratio, indicating that mobocertinib displayed the best selectivity profile in these models. Also, mobocertinib showed strong inhibitory activity in HER2 exon 20YVMA allograft and patient-derived xenograft models. In genetically engineered mouse models, HER2 exon 20G776>VC lung tumors exhibited a sustained complete response to mobocertinib, whereas HER2 exon 20YVMA tumors showed only partial and transient response. Combined treatment with a second antibody-drug conjugate (ADC) against HER2, ado-trastuzumab emtansine (T-DM1), synergized with mobocertinib in HER2 exon 20YVMA tumors. In addition to the tumor cell autonomous effect, sustained tumor growth control derived from M1 macrophage infiltration and CD4+ T-cell activation. These findings support the ongoing clinical development of mobocertinib (NCT02716116) and provide a rationale for future clinical evaluation of T-DM1 combinational therapy in HER2 exon 20YVMA insertion-mutant lung adenocarcinoma patients. SIGNIFICANCE: This study elucidates the potent inhibitory activity of mobocertinib against HER2 exon 20 insertion-mutant lung cancer and the synergic effect of combined mobocertinib and T-DM1, providing a strong rationale for clinical investigation.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Éxons , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mutação INDEL , Neoplasias Pulmonares/tratamento farmacológico , Receptor ErbB-2/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Ado-Trastuzumab Emtansina/administração & dosagem , Animais , Anticorpos Biespecíficos/administração & dosagem , Apoptose , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
AAPS J ; 23(2): 36, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33655393

RESUMO

Characterizing in vivo cellular kinetics and biodistribution of chimeric antigen receptor T (CAR-T) cells is critical for toxicity assessment, nonclinical and clinical efficacy studies. To date, the standardized assay to characterize CAR-T cell distribution, expansion, contraction, and persistence profiles is not readily available. To overcome this limitation and increase comparability among studies, we have established a universal protocol for analysis. We established a duplexing ddPCR protocol for the CAR-T transgene and reference gene to normalize the genomic DNA input prepared from mouse blood and tissues. The high-throughput gDNA extraction method enabled highly reproducible gDNA extraction while eliminating labor-intensive steps. The investigational CAR-T cells were intravenously injected into immunodeficient mice bearing human colorectal cancer xenografts. The blood and tissue samples were collected to measure the cellular kinetics by ddPCR and flow cytometry. The standard curves were linear throughout the calibration range with acceptable intra- and inter-day precision and accuracy. The gDNA recovery study performed by spiking in the exo-gene plasmid DNA or CAR-T cells revealed that the recovery ranged from 60 to 100% in blood and tissue homogenates. The use of both units of copy/µg gDNA and copy/µL blood met the current regulatory requirement and allowed for a systematic understanding of CAR-T cell expansion and a direct comparison with the flow cytometry data. A standardized ddPCR assay, including automated gDNA extraction procedures, has been established for evaluating cellular kinetics and biodistribution in CAR-T cell therapies.


Assuntos
Bioensaio/métodos , DNA/farmacocinética , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo , Animais , Linhagem Celular Tumoral , DNA/isolamento & purificação , Feminino , Citometria de Fluxo , Dosagem de Genes , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Reação em Cadeia da Polimerase , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/metabolismo , Distribuição Tecidual , Transgenes , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Discov ; 11(7): 1672-1687, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33632773

RESUMO

Most EGFR exon 20 insertion (EGFRex20ins) driver mutations in non-small cell lung cancer (NSCLC) are insensitive to approved EGFR tyrosine kinase inhibitors (TKI). To address the limitations of existing therapies targeting EGFR-mutated NSCLC, mobocertinib (TAK-788), a novel irreversible EGFR TKI, was specifically designed to potently inhibit oncogenic variants containing activating EGFRex20ins mutations with selectivity over wild-type EGFR. The in vitro and in vivo activity of mobocertinib was evaluated in engineered and patient-derived models harboring diverse EGFRex20ins mutations. Mobocertinib inhibited viability of various EGFRex20ins-driven cell lines more potently than approved EGFR TKIs and demonstrated in vivo antitumor efficacy in patient-derived xenografts and murine orthotopic models. These findings support the ongoing clinical development of mobocertinib for the treatment of EGFRex20ins-mutated NSCLC. SIGNIFICANCE: No oral EGFR-targeted therapies are approved for EGFR exon 20 insertion (EGFRex20ins) mutation-driven NSCLC. Mobocertinib is a novel small-molecule EGFR inhibitor specifically designed to target EGFRex20ins mutants. Preclinical data reported here support the clinical development of mobocertinib in patients with NSCLC with EGFR exon 20 insertion mutations.See related commentary by Pacheco, p. 1617.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Éxons , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Pirimidinas/uso terapêutico , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Receptores ErbB , Humanos , Indóis/farmacologia , Neoplasias Pulmonares/genética , Camundongos , Mutagênese Insercional , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Anal Biochem ; 509: 73-78, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27387056

RESUMO

A new technology from Quanterix called SiMoA (single molecule array) which employs a fully automated system capable of ultrasensitive sandwich based ELISA detection was explored. Our studies focused upon the inhibition of the autophagy initiating kinase ULK1 by measuring the both total Atg13 and the phosphorylation of Atg13(pSer(318)) from control and following compound treatment in either overexpressing or wild type tissue culture samples. The results show linear protein concentration dependence over two orders of magnitude and provide an assay window of 8- to 100-fold signal to background for inhibition of phosphorylation for both wild type and overexpressed samples, respectively. Moreover, overexpressed samples displayed 17-fold pSer(318)-Atg13 above wild type levels of with no apparent differences in compound potency. Lastly, the inhibition of ULK1 from mouse derived wild type xenografts also demonstrated loss of pSer(318)-Atg13 upon ULK1 inhibitor treatment that compared favorably to Western blot. These results show that the SiMoA technology can detect quantitatively low levels of endogenous biomarkers with the ability to detect the loss of pSer(318)-Atg13 upon ULK1 inhibition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Análise Serial de Proteínas/métodos , Animais , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática/métodos , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA