Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 6(1): 120, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642303

RESUMO

The Plasmodium falciparum Pfs230 and Pfs48/45 proteins are leading candidates for a malaria transmission-blocking vaccine (TBV). Previously, we showed that a Pfs230-Pfs48/45 fusion protein elicits higher levels of functional antibodies than the individual antigens, but low yields hampered progression to clinical evaluation. Here we identified a modified construct (ProC6C) with a circumsporozoite protein (CSP) repeat-linker sequence that enhances expression. A scalable and reproducible process in the Lactococcus lactis expression system was developed and ProC6C was successfully transferred for manufacturing under current Good Manufacturing Practices (cGMP). In addition, a panel of analytical assays for release and stability were developed. Intact mass spectrometry analysis and multiangle light scattering showed that the protein contained correct disulfide bonds and was monomeric. Immunogenicity studies in mice showed that the ProC6C adsorbed to Alhydrogel®, with or without Matrix-MTM, elicited functional antibodies that reduced transmission to mosquitoes and sporozoite invasion of human hepatocytes. Altogether, our data support manufacture and clinical evaluation of ProC6C as a multistage malaria-vaccine candidate.

2.
Front Immunol ; 11: 606266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505395

RESUMO

The cysteine-rich Pfs48/45 protein, a Plasmodium falciparum sexual stage surface protein, has been advancing as a candidate antigen for a transmission-blocking vaccine (TBV) for malaria. However, Pfs48/45 contains multiple disulfide bonds, that are critical for proper folding and induction of transmission-blocking (TB) antibodies. We have previously shown that R0.6C, a fusion of the 6C domain of Pfs48/45 and a fragment of PfGLURP (R0), expressed in Lactococcus lactis, was properly folded and induced transmission-blocking antibodies. Here we describe the process development and technology transfer of a scalable and reproducible process suitable for R0.6C manufacturing under current Good Manufacturing Practices (cGMP). This process resulted in a final purified yield of 25 mg/L, sufficient for clinical evaluation. A panel of analytical assays for release and stability assessment of R0.6C were developed including HPLC, SDS-PAGE, and immunoblotting with the conformation-dependent TB mAb45.1. Intact mass analysis of R0.6C confirmed the identity of the product including the three disulfide bonds and the absence of post-translational modifications. Multi-Angle Light Scattering (MALS) coupled to size exclusion chromatography (SEC-MALS), further confirmed that R0.6C was monomeric (~70 kDa) in solution. Lastly, preclinical studies demonstrated that the R0.6C Drug Product (adsorbed to Alhydrogel®) elicited functional antibodies in small rodents and that adding Matrix-M™ adjuvant further increased the functional response. Here, building upon our past work, we filled the gap between laboratory and manufacturing to ready R0.6C for production under cGMP and eventual clinical evaluation as a malaria TB vaccine.


Assuntos
Biotecnologia , Microbiologia Industrial , Lactobacillus/metabolismo , Vacinas Antimaláricas/biossíntese , Malária Falciparum/prevenção & controle , Glicoproteínas de Membrana/biossíntese , Proteínas de Protozoários/biossíntese , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antiprotozoários/imunologia , Composição de Medicamentos , Imunização , Imunogenicidade da Vacina , Lactobacillus/genética , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/farmacologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/farmacologia , Camundongos , Nanopartículas , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/farmacologia , Saponinas/farmacologia , Relação Estrutura-Atividade , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/farmacologia
3.
Front Immunol ; 10: 1256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231386

RESUMO

The Plasmodium falciparum Pfs230 and Pfs48/45 proteins are expressed during transmission from man to mosquito and are leading candidates for a malaria transmission blocking vaccine. Individually they generate transmission blocking (TB) antibodies in rodent models. Whether the single protein vaccines are suitable to use in field settings will primarily depend on their potency to elicit functional antibodies. We hypothesized that a combination of both proteins will be more potent than each protein individually. Therefore we designed chimeric proteins composed of fragments of both Pfs230 and Pfs48/45 as well as single protein fragments, and expressed these in Lactoccus lactis. Both the individual Pfs230 and Pfs48/45 fragments and chimeras elicited high levels of functional antibodies in mice. Importantly, one of the chimeric proteins elicited over threefold higher transmission blocking antibody responses than the single antigens alone. Furthermore the immunogenicity of one of the chimeras could be enhanced through coupling to a virus-like particle (VLP). Altogether these data support further clinical development of these novel constructs.


Assuntos
Anticorpos Bloqueadores/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários , Vacinas Antimaláricas , Malária Falciparum , Glicoproteínas de Membrana , Plasmodium falciparum , Proteínas de Protozoários , Animais , Anopheles , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes de Fusão
4.
Biochem J ; 475(17): 2877-2891, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30049893

RESUMO

Complement system is the first line of human defence against intruding pathogens and is recognized as a potentially useful therapeutic target. Human malaria parasite Plasmodium employs a series of intricate mechanisms that enables it to evade different arms of immune system, including the complement system. Here, we show the expression of a multi-domain Plasmodium Complement Control Protein 1, PfCCp1 at asexual blood stages and its binding affinity with C3b as well as C4b proteins of human complement cascade. Using a biochemical assay, we demonstrate that PfCCp1 binds with complement factors and inhibits complement activation. Active immunization of mice with PfCCp1 followed by challenge with Plasmodium berghei resulted in the loss of biphasic growth of parasites and early death in comparison to the control group. The study also showed a role of PfCCp1 in modulating Toll-like receptor (TLR)-mediated signalling and effector responses on antigen-presenting cells. PfCCp1 binds with dendritic cells that down-regulates the expression of signalling molecules and pro-inflammatory cytokines, thereby dampening the TLR2-mediated signalling; hence acting as a potent immuno-modulator. In summary, PfCCp1 appears to be an important component of malaria parasite directed immuno-modulating strategies that promote the adaptive fitness of pathogens in the host.


Assuntos
Células Dendríticas/imunologia , Fatores Imunológicos/imunologia , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Transdução de Sinais/imunologia , Animais , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Receptor 2 Toll-Like/imunologia
5.
BMC Microbiol ; 14: 108, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24774062

RESUMO

BACKGROUND: Adhesion of Mycoplasma pneumoniae (M. pneumoniae) to host epithelial cells requires several adhesin proteins like P1, P30 and P116. Among these proteins, P1 protein has been inedited as one of the major adhesin and immunogenic protein present on the attachment organelle of M. pneumoniae. In the present study, we scanned the entire sequence of M. pneumoniae P1 protein to identify the immunodominant and cytadherence region(s). M. pneumoniae P1 gene was synthesized in four segments replacing all the UGA codons to UGG codons. Each of the four purified P1 protein fragment was analyzed for its immunogenicity with anti-M. pneumoniae M129 antibodies (Pab M129) and sera of M. pneumoniae infected patients by western blotting and ELISA. Antibodies were produced against all the P1 protein fragments and these antibodies were used for M. pneumoniae adhesion, M. pneumoniae adhesion inhibition and M. pneumoniae surface exposure assays using HEp-2 cells lines. RESULTS: Our results show that the immunodominant regions are distributed throughout the entire length of P1 protein, while only the N- and C- terminal region(s) of P1 protein are surface exposed and block cytadhesion to HEp-2 cells, while antibodies to two middle fragments failed to block cytadhesion. CONCLUSIONS: These results have important implications in designing strategies to block the attachment of M. pneumoniae to epithelial cells, thus preventing the development of atypical pneumonia.


Assuntos
Adesinas Bacterianas/imunologia , Adesinas Bacterianas/metabolismo , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Aderência Bacteriana , Mycoplasma pneumoniae/imunologia , Mycoplasma pneumoniae/fisiologia , Adesinas Bacterianas/genética , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Células Hep G2 , Humanos , Estrutura Terciária de Proteína , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA