Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850165

RESUMO

AIM: Given the extremely limited regeneration potential of the heart, one of the most effective strategies to reduce the prevalence and mortality of coronary artery disease is prevention. Short-chain fatty acids (SCFAs), which are by-products of beneficial probiotics, have been reported to possess cardioprotective effects. Despite their beneficial roles, delivering SCFAs and maintaining their effective concentration in plasma present major challenges. Therefore, in the present study, we aimed to devise a strategy to prevent coronary heart disease effectively by using engineered probiotics to continuously release SCFAs in vivo. METHODS AND RESULTS: We engineered a novel probiotic cocktail, EcN_TL, from the commercially available Escherichia coli Nissle 1917 strain to continuously secrete SCFAs by introducing the propionate and butyrate biosynthetic pathways. Oral administration of EcN_TL enhanced and maintained an effective concentration of SCFAs in the plasma. As a preventative strategy, we observed that daily intake of EcN_TL for 14 days prior to ischemia-reperfusion injury significantly reduced myocardial injury and improved cardiac performance compared to EcN administration. We uncovered that EcN_TL's protective mechanisms included reducing neutrophil infiltration into the infarct site and promoting the polarization of wound-healing macrophages. We further revealed that SCFAs at plasma concentration protected cardiomyocytes from inflammation by suppressing the NF-κB activation pathway. CONCLUSIONS: These data provide strong evidence to support the use of SCFA-secreting probiotics to prevent coronary heart disease. Since SCFAs also play a key role in other metabolic diseases, EcN_TL can potentially be used to treat a variety of other diseases.

2.
J Vis Exp ; (152)2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31633694

RESUMO

Interferon regulatory factor 5 (IRF5) is a key transcription factor for regulating the immune response. It is activated downstream of the Toll-like receptor myeloid differentiation primary response gene 88 (TLR-MyD88) signaling pathway. IRF5 activation involves phosphorylation, dimerization, and subsequent translocation from the cytoplasm into the nucleus, which in turn induces the gene expression of various pro-inflammatory cytokines. A detection assay for IRF5 activation is essential to studying IRF5 functions and its relevant pathways. This article describes a robust assay to detect endogenous IRF5 activation in the CAL-1 human plasmacytoid dendritic cell (pDC) line. The protocol consists of a modified nondenaturing electrophoresis assay that can distinguish IRF5 in its monomer and dimer forms, thus providing an affordable and sensitive approach to analyze IRF5 activation.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Eletroforese em Gel de Poliacrilamida Nativa/métodos , Animais , Dimerização , Humanos , Immunoblotting , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA