Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 7: 512, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148334

RESUMO

Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant's tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection.

2.
Front Plant Sci ; 6: 758, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442071

RESUMO

Cyclic electron flux (CEF) around Photosystem I (PS I) is difficult to quantify. We obtained the linear electron flux (LEFO2) through both photosystems and the total electron flux through PS I (ETR1) in Arabidopsis in CO2-enriched air. ΔFlux = ETR1 - LEFO2 is an upper estimate of CEF, which consists of two components, an antimycin A-sensitive, PGR5 (proton gradient regulation 5 protein)-dependent component and an insensitive component facilitated by a chloroplastic nicotinamide adenine dinucleotide dehydrogenase-like complex (NDH). Using wild type as well as pgr5 and ndh mutants, we observed that (1) 40% of the absorbed light was partitioned to PS I; (2) at high irradiance a substantial antimycin A-sensitive CEF occurred in the wild type and the ndh mutant; (3) at low irradiance a sizable antimycin A-sensitive CEF occurred in the wild type but not in the ndh mutant, suggesting an enhancing effect of NDH in low light; and (4) in the pgr5 mutant, and the wild type and ndh mutant treated with antimycin A, a residual ΔFlux existed at high irradiance, attributable to charge recombination and/or pseudo-cyclic electron flow. Therefore, in low-light-acclimated plants exposed to high light, ΔFlux has contributions from various paths of electron flow through PS I.

3.
Plant Cell Physiol ; 56(6): 1162-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25759327

RESUMO

Dinoflagellates from the genus Symbiodinium form symbiotic relationships with many marine invertebrates, including reef-building corals. Symbiodinium is genetically diverse, and acquiring suitable Symbiodinium phylotypes is crucial for the host to survive in habitat environments, such as high-light conditions. The sensitivity of Symbiodinium to high light differs among Symbiodinium phylotypes, but the mechanism that controls light sensitivity has not yet been fully resolved. In the present study using high-light-tolerant and -sensitive Symbiodinium phylotypes, we examined what determines sensitivity to high light. In growth experiments under different light intensities, Symbiodinium CS-164 (clade B1) and CCMP2459 (clade B2) were identified as high-light-tolerant and -sensitive phylotypes, respectively. Measurements of the maximum quantum yield of photosystem II (PSII) and the maximum photosynthetic oxygen production rate after high-light exposure demonstrated that CCMP2459 is more sensitive to photoinhibition of PSII than CS-164, and tends to lose maximum photosynthetic activity faster. Measurement of photodamage to PSII under light of different wavelength ranges demonstrated that PSII in both Symbiodinium phylotypes was significantly more sensitive to photodamage under shorter wavelength regions of light spectra (<470 nm). Importantly, PSII in CCMP2459, but not CS-164, was also sensitive to photodamage under the regions of light spectra around 470-550 and 630-710 nm, where photosynthetic antenna proteins of Symbiodinium have light absorption peaks. This finding indicates that the high-light-sensitive CCMP2459 has an extra component of photodamage to PSII, resulting in higher sensitivity to high light. Our results demonstrate that sensitivity of PSII to photodamage differs among Symbiodinium phylotypes and this determines their sensitivity to high light.


Assuntos
Dinoflagellida/efeitos da radiação , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Absorção de Radiação , Dinoflagellida/crescimento & desenvolvimento , Oxigênio/metabolismo , Fotossíntese/efeitos da radiação
4.
Plant Physiol ; 163(2): 732-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23940253

RESUMO

Excess light can have a negative impact on photosynthesis; thus, plants have evolved many different ways to adapt to different light conditions to both optimize energy use and avoid damage caused by excess light. Analysis of the Arabidopsis (Arabidopsis thaliana) mutant snowy cotyledon4 (sco4) revealed a mutation in a chloroplast-targeted protein that shares limited homology with CaaX-type endopeptidases. The SCO4 protein possesses an important function in photosynthesis and development, with point mutations rendering the seedlings and adult plants susceptible to photooxidative stress. The sco4 mutation impairs the acclimation of chloroplasts and their photosystems to excess light, evidenced in a reduction in photosystem I function, decreased linear electron transfer, yet increased nonphotochemical quenching. SCO4 is localized to the chloroplasts, which suggests the existence of an unreported type of protein modification within this organelle. Phylogenetic and yeast complementation analyses of SCO4-like proteins reveal that SCO4 is a member of an unknown group of higher plant-specific proteinases quite distinct from the well-described CaaX-type endopeptidases RAS Converting Enzyme1 (RCE1) and zinc metallopeptidase STE24 and lacks canonical CaaX activity. Therefore, we hypothesize that SCO4 is a novel endopeptidase required for critical protein modifications within chloroplasts, influencing the function of proteins involved in photosynthesis required for tolerance to excess light.


Assuntos
Aclimatação/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Luz , Metaloendopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Fotossíntese/efeitos da radiação , Motivos de Aminoácidos , Arabidopsis/efeitos da radiação , Cloroplastos/enzimologia , Cloroplastos/efeitos da radiação , Sequência Conservada , Ecótipo , Transporte de Elétrons/efeitos da radiação , Peróxido de Hidrogênio/metabolismo , Mutação/genética , Fenótipo , Fotodegradação/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transporte Proteico/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA