Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1261: 341209, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37147055

RESUMO

Growing concerns about environmental conditions, public health, and disease diagnostics have led to the rapid development of portable sampling techniques to characterize trace-level volatile organic compounds (VOCs) from various sources. A MEMS-based micropreconcentrator (µPC) is one such approach that drastically reduces the size, weight, and power constraints offering greater sampling flexibility in many applications. However, the adoption of µPCs on a commercial scale is hindered by a lack of thermal desorption units (TDUs) that easily integrate µPCs with gas chromatography (GC) systems equipped with a flame ionization detector (FID) or a mass spectrometer (MS). Here, we report a highly versatile µPC-based, single-stage autosampler-injection unit for traditional, portable, and micro-GCs. The system uses µPCs packaged in 3D-printed swappable cartridges and is based on a highly modular interfacing architecture that allows easy-to-remove, gas-tight fluidic, and detachable electrical connections (FEMI). This study describes the FEMI architecture and demonstrates the FEMI-Autosampler (FEMI-AS) prototype (9.5 cm × 10 cm x 20 cm, ≈500 gms). The system was integrated with GC-FID, and the performance was investigated using synthetic gas samples and ambient air. The results were contrasted with the sorbent tube sampling technique using TD-GC-MS. FEMI-AS could generate sharp injection plugs (≈240 ms) and detect analytes with concentrations <15 ppb within 20 s and <100 ppt within 20 min of sampling time. With more than 30 detected trace-level compounds from ambient air, the demonstrated FEMI-AS, and the FEMI architecture significantly accelerate the adoption of µPCs on a broader scale.

2.
J Chromatogr A ; 1647: 462144, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33957352

RESUMO

This work highlights the effect of the stationary phase coating process on the separation efficiency of gas chromatography microcolumns. The stationary phase coating quality was characterized by three different bis(trifluoromethylsulfonyl)imide (NTf2) anion based ionic liquids. The ionic liquids containing NTf2 anion are used for gas chromatography due to their high temperature stability. In this work, the chemical and physical approaches of column deactivation as well as the temperature treatment were evaluated by separating a mixture of 20 organic components and saturated alkanes. The results show that higher oven temperature treatment provides higher efficiency while losing a bit of peak symmetry. The thermal treated 1-butylpyridinum bis(trifluoromethylsulfonyl) imide [BPY][NTf2] stationary phase at 240°C demonstrated as high as 8300 plates per meter for naphthalene. This was a 5-fold increase in separation efficiency in comparison to those of the columns treated at 200°C. Albeit being within acceptable ranges, the peak tailing degraded from 1.17 to 1.46 for naphthalene when the processing temperature for coating increased. Both chemical and physical deactivation process increased separation efficiencies and peak resolution.


Assuntos
Cromatografia Gasosa/instrumentação , Cromatografia Gasosa/métodos , Líquidos Iônicos/química , Alcanos/análise , Alcanos/isolamento & purificação , Ânions/química , Hidrocarbonetos Fluorados/química , Imidas/química , Temperatura
3.
Anal Chem ; 92(15): 10635-10642, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32640785

RESUMO

The paper presents a parallel micro gas chromatography approach using three ionic liquid semipacked columns. Switching from single column to multiple parallel columns with different selectivity enhances the power of compound identification without increasing the analysis time. The columns are fabricated using microelectromechanical systems (MEMS) technology containing an array of microfabricated pillars. The columns are 1 m-long and 240 µm-deep with four pillars per row. All columns were functionalized with ionic liquid stationary phases using a modified static coating technique and demonstrated the number of theoretical plates between 5000 and 8300 per meter. The chip performance was investigated with four different samples: (1) a mixture of C7-C30 saturated alkanes, (2) a multianalyte mixture consisting of 20 compounds ranging from 80 to 238 °C in boiling point, (3) a mixture of five organic chemicals with varying degrees of polarity, and (4) 46-compounds mixture containing all the chemicals in the first three samples. The individual columns separated 75%-100% of the first three samples but failed to distinguish all 46 compounds due to coeluting analytes; however, the parallel configuration provided more retention time information by which all the compounds in all samples were fully determined.


Assuntos
Cromatografia Gasosa/métodos , Gases/análise , Líquidos Iônicos/química , Microtecnologia/métodos , Gases/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA