Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 275: 111132, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002703

RESUMO

Local regulations on residential landscapes (yards and gardens) can facilitate or constrain ecosystem services and disservices in cities. To our knowledge, no studies have undertaken a comprehensive look at how municipalities regulate residential landscapes to achieve particular goals and to control management practices. Across six U.S. cities, we analyzed 156 municipal ordinances to examine regional patterns in local landscape regulations and their implications for sustainability. Specifically, we conducted content analysis to capture regulations aimed at: 1) goals pertaining to conservation and environmental management, aesthetics and nuisance avoidance, and health and wellbeing, and 2) management actions including vegetation maintenance, water and waste management, food production, and chemical inputs. Our results reveal significant variation in local and regional regulations. While regulatory goals stress stormwater management and nuisance avoidance, relatively few municipalities explicitly regulate residential yards to maintain property values, mitigate heat, or avoid allergens. Meanwhile, biological conservation and water quality protection are common goals, yet regulations on yard management practices (e.g., non-native plants or chemical inputs) sometimes contradict these purposes. In addition, regulations emphasizing aesthetics and the maintenance of vegetation, mowing of grass and weeds, as well as the removal of dead wood, may inhibit wildlife-friendly yards. As a whole, landscaping ordinances largely ignore tradeoffs between interacting goals and outcomes, thereby limiting their potential to support landscape sustainability. Recommendations therefore include coordinated, multiobjective planning through partnerships among planners, developers, researchers, and non-government entities at multiple scales.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cidades , Jardinagem , Plantas
3.
Science ; 366(6471)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31831642

RESUMO

The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.


Assuntos
Conservação dos Recursos Naturais , Atividades Humanas/tendências , Qualidade de Vida , Planeta Terra , Humanos , Crescimento Demográfico
4.
PLoS One ; 14(11): e0222630, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31721782

RESUMO

Residential land is expanding in the United States, and lawn now covers more area than the country's leading irrigated crop by area. Given that lawns are widespread across diverse climatic regions and there is rising concern about the environmental impacts associated with their management, there is a clear need to understand the geographic variation, drivers, and outcomes of common yard care practices. We hypothesized that 1) income, age, and the number of neighbors known by name will be positively associated with the odds of having irrigated, fertilized, or applied pesticides in the last year, 2) irrigation, fertilization, and pesticide application will vary quadratically with population density, with the highest odds in suburban areas, and 3) the odds of irrigating will vary by climate, but fertilization and pesticide application will not. We used multi-level models to systematically address nested spatial scales within and across six U.S. metropolitan areas-Boston, Baltimore, Miami, Minneapolis-St. Paul, Phoenix, and Los Angeles. We found significant variation in yard care practices at the household (the relationship with income was positive), urban-exurban gradient (the relationship with population density was an inverted U), and regional scales (city-to-city variation). A multi-level modeling framework was useful for discerning these scale-dependent outcomes because this approach controls for autocorrelation at multiple spatial scales. Our findings may guide policies or programs seeking to mitigate the potentially deleterious outcomes associated with water use and chemical application, by identifying the subpopulations most likely to irrigate, fertilize, and/or apply pesticides.


Assuntos
Meio Ambiente , Habitação , Recursos Naturais , Irrigação Agrícola , Cidades , Clima , Características da Família , Feminino , Fertilizantes , Humanos , Masculino , Pessoa de Meia-Idade , Praguicidas , Fatores Socioeconômicos , Estados Unidos , População Urbana
5.
Ecol Appl ; 29(4): e01884, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30933402

RESUMO

In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (δ13 C, index of C3 /C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4 carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant δ13 C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3 /C4 competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3 /C4 plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities.


Assuntos
Ecossistema , Poaceae , Cidades , Humanos , Fotossíntese , Dispersão Vegetal , Estados Unidos
7.
Proc Natl Acad Sci U S A ; 111(12): 4432-7, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616515

RESUMO

Changes in land use, land cover, and land management present some of the greatest potential global environmental challenges of the 21st century. Urbanization, one of the principal drivers of these transformations, is commonly thought to be generating land changes that are increasingly similar. An implication of this multiscale homogenization hypothesis is that the ecosystem structure and function and human behaviors associated with urbanization should be more similar in certain kinds of urbanized locations across biogeophysical gradients than across urbanization gradients in places with similar biogeophysical characteristics. This paper introduces an analytical framework for testing this hypothesis, and applies the framework to the case of residential lawn care. This set of land management behaviors are often assumed--not demonstrated--to exhibit homogeneity. Multivariate analyses are conducted on telephone survey responses from a geographically stratified random sample of homeowners (n = 9,480), equally distributed across six US metropolitan areas. Two behaviors are examined: lawn fertilizing and irrigating. Limited support for strong homogenization is found at two scales (i.e., multi- and single-city; 2 of 36 cases), but significant support is found for homogenization at only one scale (22 cases) or at neither scale (12 cases). These results suggest that US lawn care behaviors are more differentiated in practice than in theory. Thus, even if the biophysical outcomes of urbanization are homogenizing, managing the associated sustainability implications may require a multiscale, differentiated approach because the underlying social practices appear relatively varied. The analytical approach introduced here should also be productive for other facets of urban-ecological homogenization.

8.
J Vector Ecol ; 33(1): 107-16, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18697313

RESUMO

In this study we 1) describe the abundance of Anopheles and culicine immatures in different water body types in urban Malindi, Kenya, 2) compare Anopheles immature density in relation to culicine immature density, and 3) identify characteristics that influence the likelihood of water bodies being co-colonized by Anopheles and culicines. Entomological and environmental cross-sectional surveys conducted in 2001 and 2002 were used in the analysis. A total of 889 Anopheles and 7,217 culicine immatures were found in diverse water body types in 2001 and 2002. Car-track pools (n = 45) and unused swimming pools (n = 25) comprised 61% (70 of 115) of all water bodies found and served as the main habitats for Anopheles immatures. Of the 38 water bodies found containing Anopheles immature mosquitoes, 63% (24 of 38) were car-track pools and unused swimming pools. Culicine immatures utilized several water body types as habitats. We found that Anopheles and culicine immatures had higher density when occurring individually compared to when they occurred simultaneously. We determined that season, permanency, and water body area size influenced the likelihood of water bodies being simultaneously positive for Anopheles and culicines. Though Anopheles immatures were found in diverse water body types, their numbers were low compared to culicine immatures. The low density of Anopheles immatures suggests that Anopheles larval control is an achievable goal in Malindi.


Assuntos
Anopheles/crescimento & desenvolvimento , Culicidae/crescimento & desenvolvimento , Água Doce/parasitologia , Animais , Cidades , Ecologia , Quênia
9.
J Vector Ecol ; 32(2): 319-27, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18260524

RESUMO

The increasing risk of mosquito-borne diseases in African urban environments has been partly attributed to failed planning and resource underdevelopment. Though engineered systems may reduce mosquito proliferation, there are few studies describing this relationship. This study investigates how engineered systems such as roads and piped water systems affect the odds of anopheline immatures (i.e., larvae and pupae) occurring in water bodies located in Malindi, Kenya. Anopheles gambiae s.s. (Giles), An. arabiensis (Patton), and An. merus (Dointz) were identified in urban Malindi, with Anopheles gambiae s.s. being the predominant species identified. The Breslow-Day test was used to explore interactions among independent variables. Logistic regression was used to test whether water bodies positive for anopheline immatures are associated with engineered systems, while controlling for potential confounding and interaction effects associated with urban water body characteristics. Water bodies more than 100 m from water pipes were 13 times more likely to have anopheline immatures present, compared to water bodies that were less than 100 m from water pipes (OR = 13.54, 95% CI: 3.15-58.23). Roads were not significantly associated with water bodies positive for anopheline immatures. Statistical interaction was detected between water body substrate type and distance to water pipes. This study provides insight into how water pipes influence the distribution of water bodies positive with immature anophelines in urban environments.


Assuntos
Anopheles , Insetos Vetores , Abastecimento de Água , Animais , Água Doce , Quênia , Densidade Demográfica , Vigilância da População
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA