RESUMO
Derangements in protein homeostasis and associated proteotoxicity mark acute, chronic, and drug-induced hepatocellular injury. Metabolic dysfunction-associated proteasomal inhibition and the use of proteasome inhibitors often underlie such pathological hepatic proteotoxicity. In this study, we sought to identify a candidate deubiquitinating enzyme (DUB) responsible for reversing the proteotoxic damage. To this end, we performed a siRNA screening wherein 96 DUBs were individually knocked down in HepG2 cells under proteasomal inhibitor-induced stress for dual readouts, apoptosis, and cell viability. Among the putative hits, we chose JOSD1, a member of the Machado-Josephin family of DUBs that reciprocally increased cell viability and decreased cell death under proteotoxicity. JOSD1-mediated mitigation of proteotoxicity was further validated in primary mouse hepatocytes by gain and loss of function studies. Marked plasma membrane accumulation of monoubiquitinated JOSD1 in proteotoxic conditions is a prerequisite for its protective role, while the enzymatically inactive JOSD1 C36A mutant was conversely polyubiquitinated, does not have membrane localisation and fails to reverse proteotoxicity. Mechanistically, JOSD1 physically interacts with the suppressor of cytokine signalling 1 (SOCS1), deubiquitinates it and enhances its stability under proteotoxic stress. Indeed, SOCS1 expression is necessary and sufficient for the hepatoprotective function of JOSD1 under proteasomal inhibition. In vivo, adenovirus-mediated ectopic expression or depletion of JOSD1 in mice liver respectively protects or aggravates hepatic injury when challenged with proteasome blocker Bortezomib. Our study thus unveils JOSD1 as a potential candidate for ameliorating hepatocellular damage in liver diseases.
RESUMO
Background and aims: Alcoholic liver disease (ALD) is the leading cause of the liver cirrhosis related death worldwide. Excessive alcohol consumption resulting enhanced gut permeability which trigger sensitization of inflammatory cells to bacterial endotoxins and induces secretion of cytokines, chemokines leading to activation of stellate cells, neutrophil infiltration and hepatocyte injury followed by steatohepatitis, fibrosis and cirrhosis. But all chronic alcoholics are not susceptible to ALD. This study investigated the causes of differential immune responses among ALD patients and alcoholic controls (ALC) to identify genetic risk factors and assessed the therapeutic potential of a microRNA, miR-124-3p. Materials and methods: Bio-Plex Pro™ Human Chemokine analysis/qRT-PCR array was used for identification of deregulated immune genes. Sequencing/luciferase assay/ELISA detected and confirmed the polymorphisms. THP1 co-cultured with HepG2/LX2/HUVEC and apoptosis assay/qRT-PCR/neutrophil migration assay were employed as required. Results: The combined data analysis of the GSE143318/Bio-Plex Pro™ Human Chemokine array and qRT-PCR array revealed that six genes (TNFα/IL1ß/IL8/MCP1/IL6/TGFß) were commonly overexpressed in both serum/liver tissue of ALD-patients compared to ALC. The promoter sequence analysis of these 6 genes among ALD (n=322)/ALC (n=168) samples revealed that only two SNPs, rs361525(G/A) at -238 in TNF-α/rs1143627(C/T) at -31 in IL1ß were independently associated with ALD respectively. To evaluate the functional implication of these SNPs on ALD development, the serum level of TNF-α/IL1ß was verified and observed significantly higher in ALD patients with risk genotypes TNF-α-238GA/IL1ß-31CT+TT than TNF-α-238GG/IL1ß-31CC. The TNF-α/IL1ß promoter Luciferase-reporter assays showed significantly elevated level of luciferase activities with risk genotypes -238AA/-31TT than -238GG/-31CC respectively. Furthermore, treatment of conditioned medium of TNF-α/IL1ß over-expressed THP1 cells to HepG2/LX2/HUVEC cells independently showed enhanced level of ER stress and apoptosis in HepG2/increased TGFß and collagen-I production by LX2/huge neutrophil infiltration through endothelial layer. However, restoration of miR-124-3p in THP1 attenuated such inter-cellular communications and hepatocyte damage/collagen production/neutrophil infiltration were prohibited. Target analysis/luciferase-reporter assays revealed that both TNF-α/IL1ß were inhibited by miR-124-3p along with multiple genes from TLR4 signaling/apoptosis/fibrogenesis pathways including MYD88, TRAF3/TRADD, Caspase8/PDGFRA, TGFßR2/MCP1, and ICAM1 respectively. Conclusion: Thus, rs361525(G/A) in TNF-α and rs1143627(C/T) in IL1ß gene may be used as early predictors of ALD susceptibility among East Indian population. Impeding overexpressed TNF-α/IL1ß and various genes from associated immune response pathways, miR-124-3p exhibits robust therapeutic potential for ALD patients.
Assuntos
Interleucina-1beta , Hepatopatias Alcoólicas , MicroRNAs , Fator de Necrose Tumoral alfa , Humanos , Quimiocinas/genética , Colágeno/genética , Cirrose Hepática/genética , Hepatopatias Alcoólicas/genética , Luciferases/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Fator de Crescimento Transformador beta/genética , Fator de Necrose Tumoral alfa/genética , Interleucina-1beta/genéticaRESUMO
E3 ubiquitin ligase, Constitutive Photomorphogenic 1 (COP1) regulates turnover of Adipose Triglyceride Lipase (ATGL), the rate-limiting lipolytic enzyme. Genetic perturbation in the COP1-ATGL axis disrupts lipid homeostasis, leading to liver steatosis. Using drug development strategies, we herein report quinazolinone and quinazolinedione based modulators for COP1-ATGL axis. Systematic SAR studies and subsequent optimization were performed by incorporating relevant functional groups at the N1, N3, C5, and C6 positions of both scaffolds. Compounds' efficacy was evaluated by multiple biological assays and ADME profiling. The lead compound 86 could increase ATGL protein expression, reduce ATGL ubiquitination and COP1 autoubiquitination, and diminish lipid accumulation in hepatocytes in the nanomolar range. Oral administration of 86 abrogated triglyceride accumulation and resolved fibrosis in preclinical Nonalcoholic Fatty Liver Disease (NAFLD) model. The study thus establishes quinazolinedione as a viable chemotype to therapeutically modulate the activity of COP1 and ATGL in relevant clinical contexts.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/metabolismo , Lipase , Hepatócitos/metabolismo , Triglicerídeos/metabolismoRESUMO
Background: Defective translocation of the translational repressor TIAR (T-cell internal antigen receptor) in bronchial epithelial cells (BECs) from asthma patients underlies epithelial hyperresponsiveness, reflected by an exaggerated production of a select panel of inflammatory cytokines such as CXCL-8, interleukin (IL)-6, granulocyte colony-stimulating factor, CXCL-10, upon exposure to tumour necrosis factor (TNF) and IL-17A. With this study we aimed to clarify whether epithelial hyperresponsiveness is a consistent finding, is changed upon in vivo exposure to rhinovirus (RV)-A16 and applies to the bronchoconstrictor endothelin-1. Methods: BECs were obtained from asthma patients (n=18) and healthy individuals (n=11), 1â day before and 6â days post-RV-A16 exposure. BECs were cultured and stimulated with TNF and IL-17A and inflammatory mediators were analysed. The bronchoalveolar lavage fluid (BALF) was obtained in parallel with BECs to correlate differential cell counts and inflammatory mediators with epithelial hyperresponsiveness. Results: Epithelial hyperresponsiveness was confirmed in sequential samples and even increased in BECs from asthma patients after RV-A16 exposure, but not in BECs from healthy individuals. Endothelin-1 tended to increase in BECs from asthma patients collected after RV-A16 exposure, but not in BECs from healthy individuals. In vitro CXCL-8 and endothelin-1 production correlated. In vivo relevance for in vitro CXCL-8 and endothelin-1 production was shown by correlations with forced expiratory volume in 1â s % predicted and CXCL-8 BALF levels. Conclusion: Epithelial hyperresponsiveness is an intrinsic defect in BECs from asthma patients, which increases upon viral exposure, but not in BECs from healthy individuals. This epithelial hyperresponsiveness also applies to the bronchoconstrictor endothelin-1, which could be involved in airway obstruction.
RESUMO
Neutrophilic inflammation in asthma is associated with interleukin (IL)-17A, corticosteroid-insensitivity and bronchodilator-induced forced expiratory volume in 1â s (FEV1) reversibility. IL-17A synergises with tumour necrosis factor (TNF)-α in the production of the neutrophil chemokine CXCL-8 by primary bronchial epithelial cells (PBECs).We hypothesised that local neutrophilic inflammation in asthma correlates with IL-17A and TNF-α-induced CXCL-8 production by PBECs from asthma patients.PBECs from most asthma patients displayed an exaggerated CXCL-8 production in response to TNF-α and IL-17A, but not to TNF-α alone, and which was also insensitive to corticosteroids. This hyperresponsiveness of PBECs strongly correlated with CXCL-8 levels and neutrophil numbers in bronchoalveolar lavage from the corresponding patients, but not with that of eosinophils. In addition, this hyperresponsiveness also correlated with bronchodilator-induced FEV1 % reversibility. At the molecular level, epithelial hyperresponsiveness was associated with failure of the translational repressor T-cell internal antigen-1 related protein (TiAR) to translocate to the cytoplasm to halt CXCL-8 production, as confirmed by TiAR knockdown. This is in line with the finding that hyperresponsive PBECs also produced enhanced levels of other inflammatory mediators.Hyperresponsive PBECs in asthma patients may underlie neutrophilic and corticosteroid-insensitive inflammation and a reduced FEV1, irrespective of eosinophilic inflammation. Normalising cytoplasmic translocation of TiAR is a potential therapeutic target in neutrophilic, corticosteroid-insensitive asthma.
Assuntos
Asma/fisiopatologia , Epitélio/metabolismo , Interleucina-17/metabolismo , Neutrófilos/metabolismo , Adolescente , Corticosteroides/uso terapêutico , Adulto , Idoso , Albuterol/farmacologia , Asma/patologia , Brônquios/metabolismo , Brônquios/patologia , Hiper-Reatividade Brônquica/metabolismo , Lavagem Broncoalveolar , Linhagem Celular Tumoral , Citoplasma/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Volume Expiratório Forçado , Humanos , Inflamação , Interleucina-8/metabolismo , Pulmão/patologia , Masculino , Cloreto de Metacolina/farmacologia , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Testes de Função Respiratória , Fumar , Fator de Necrose Tumoral alfa/metabolismo , Adulto JovemRESUMO
The present paper deals with monitoring soil radon-222 concentration at two different locations, designated Site A and Site B, 200â¯m apart at Jadavpur University campus, Kolkata, India, with a view to find possible precursors for the earthquakes that occurred within a few hundred kilometers from the monitoring site. The solid state nuclear track detector CR-39 has been used for detection of radon gas coming out from soil. Radon-222 time series at both locations during the period August 2012-December 2013 have been analysed. Distinct anomalies in the soil radon time series have been observed for seven earthquakes of magnitude greater than 4.0â¯M that occurred during this time. Of these, radon anomalies for two earthquakes have been observed at both locations A and B. Absence of anomalies for some other earthquakes has been discussed, and the observations have been compared with some earthquake precursor models.
Assuntos
Terremotos , Monitoramento de Radiação , Radônio/análise , Poluentes Radioativos do Solo/análise , ÍndiaRESUMO
An appreciable portion of human exposure to natural radioactivity comes from food and drinking water. Gross alpha radioactivity has been measured in thirty one food items consumed almost every day by the people of southern part of West Bengal, India, by using the solid state nuclear track detector LR-115. The annual effective doses due to intake of alpha-emitting radionuclides through these food items have also been estimated, and the total average annual dose received by an adultthrough ingestion of these foodstuffs calculated, considering the food habit of the people of the region. The total average annual dose is below the 1 mSv y-1 limit proposed by WHO, and over half of this annual dose comes from consumption of cereals.
Assuntos
Exposição Ambiental/análise , Contaminação Radioativa de Alimentos/análise , Doses de Radiação , Contaminação Radioativa da Água/análise , Radiação de Fundo , Humanos , ÍndiaRESUMO
Interleukin 17A (IL-17), a mediator implicated in chronic and severe inflammatory diseases, enhances the production of pro-inflammatory mediators by attenuating decay of the encoding mRNAs. The decay of many of these mRNAs depends on proteins (AUBps) that target AU-rich elements in the 3'-untranslated region of mRNAs and facilitate either mRNA decay or stabilization. Here we show that AUBps and the target mRNA assemble in a novel ribonucleoprotein complex in the presence of microRNA16 (miR16), which leads to the degradation of the target mRNA. Notably, IL-17 attenuates miR16 expression and promotes the binding of stabilizing AUBps over that of destabilizing AUBps, reducing mRNA decay. These findings indicate that miR16 independently of a seed sequence, directs the competition between degrading and stabilizing AUBps for target mRNAs. Since AUBps affect expression of about 8% of the human transcriptome and miR16 is ubiquitously expressed, IL-17 may in addition to inflammation affect many other cellular processes.
Assuntos
Elementos Ricos em Adenilato e Uridilato/genética , Inflamação/genética , Interleucina-17/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Hidrolases de Éster Carboxílico/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Inflamação/patologia , Interleucina-17/genética , Ligação Proteica , Estabilidade de RNA/genética , RNA Mensageiro/genéticaRESUMO
The peptidyl transferase center, present in domain V of 23S rRNA of eubacteria and large rRNA of plants and animals, can act as a general protein folding modulator. Here we show that a few specific nucleotides in Escherichia coli domain V RNA bind to unfolded proteins and, as shown previously, bring the trapped proteins to a folding-competent state before releasing them. These nucleotides are the same for the proteins studied so far: bovine carbonic anhydrase, lactate dehydrogenase, malate dehydrogenase, and chicken egg white lysozyme. The amino acids that interact with these nucleotides are also found to be specific in the two cases tested: bovine carbonic anhydrase and lysozyme. They are either neutral or positively charged and are present in random coils on the surface of the crystal structure of both the proteins. In fact, two of these amino acid-nucleotide pairs are identical in the two cases. How these features might help the process of protein folding is discussed.
Assuntos
Dobramento de Proteína , RNA Bacteriano/química , RNA Ribossômico 23S/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Sequência de Bases , Sítios de Ligação , Bovinos , Embrião de Galinha , Cristalografia por Raios X , Enzimas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleotídeos/química , Conformação Proteica , RNA Bacteriano/genética , RNA Ribossômico 23S/genética , Subunidades Ribossômicas Maiores de Bactérias/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Folding of unfolded protein on Escherichia coli 70S ribosome is accompanied by rapid dissociation of the ribosome into 50S and 30S subunits. The dissociation rate of 70S ribosome with unfolded protein is much faster than that caused by combined effect of translation and polypeptide release factors known to be involved in the dissociation of ribosome into subunits. The protein then reaches a "folding competent" state on 50S and is released to take up native conformation by itself. Release before attaining the folding competent state or prevention of release by cross-linking it with ribosome, would not allow the protein to get back to its native conformation.
Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Sítios de Ligação , Ligação Proteica , Biossíntese de Proteínas/fisiologia , Dobramento de Proteína , Subunidades ProteicasRESUMO
Regulatory RNA elements, like riboswitches, respond to intracellular signals by three-dimensional (3D) conformational changes. RNA thermometers employ a similar strategy to sense temperature changes in the cell and regulate the translational machinery. We present here the first 3D NMR structure of the functional domain of a highly conserved bacterial RNA thermometer containing the ribosome binding site that remains occluded at normal temperatures (30 degrees C). We identified a region adjacent to the Shine-Dalgarno sequence that has a network of weak hydrogen bonds within the RNA helix. With the onset of heat shock at 42 degrees C, destabilisation of the RNA structure initiates at this region and favours the release of the ribosome binding site and of the start codon. Deletion of a highly conserved G residue leads to the formation of a stable regular RNA helix that loses thermosensing ability. Our results indicate that RNA thermometers are able to sense temperature changes without the aid of accessory factors.
Assuntos
Conformação de Ácido Nucleico , RNA/química , Temperatura , Termômetros , Sequência de Bases , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , RNA/metabolismoRESUMO
Temperature is an important parameter that free-living cells monitor constantly. The expression of heat-shock, cold-shock and some virulence genes is coordinated in response to temperature changes. Apart from protein-mediated transcriptional control mechanisms, translational control by RNA thermometers is a widely used regulatory strategy. RNA thermometers are complex RNA structures that change their conformation in response to temperature. Most, but not all, RNA thermometers are located in the 5'-untranslated region and mask ribosome-binding sites by base pairing at low temperatures. Melting of the structure at increasing temperature permits ribosome access and translation initiation. Different cis-acting RNA thermometers and a trans-acting thermometer will be presented.
Assuntos
Resposta ao Choque Térmico , Processamento Pós-Transcricional do RNA , RNA Mensageiro , Animais , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Bactérias/patogenicidade , Sequência de Bases , Drosophila/química , Drosophila/genética , Drosophila/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Thermoresponsive structures in the 5'-untranslated region of mRNA are known to control translation of heat shock and virulence genes. Expression of many rhizobial heat shock genes is regulated by a conserved sequence element called ROSE for repression of heat shock gene expression. This cis-acting, untranslated mRNA is thought to prevent ribosome access at low temperature through an extended secondary structure, which partially melts when the temperature rises. We show here by a series of in vivo and in vitro approaches that ROSE is a sensitive thermometer responding in the physiologically relevant temperature range between 30 and 40 degrees C. Point mutations predicted to disrupt base pairing enhanced expression at 30 degrees C. Compensatory mutations restored repression, emphasizing the importance of secondary structures in the sensory RNA. Only moderate inducibility of a 5'-truncated ROSE variant suggests that interactions between individual stem loops coordinate temperature sensing. In the presence of a complementary oligonucleotide, the functionally important stem loop of ROSE was rendered susceptible to RNase H treatment at heat shock temperatures. Since major structural rearrangements were not observed during UV and CD spectroscopy, subtle structural changes involving the Shine-Dalgarno sequence are proposed to mediate translational control. Temperature perception by the sensory RNA is an ordered process that most likely occurs without the aid of accessory factors.
Assuntos
RNA/química , Regiões 5' não Traduzidas , Bradyrhizobium/genética , Dicroísmo Circular , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura Alta , Mutação , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Mutação Puntual , Biossíntese de Proteínas , RNA/metabolismo , RNA Mensageiro/metabolismo , Ribonuclease H/metabolismo , Ribonuclease H/farmacologia , Espectrofotometria , Temperatura , Transcrição Gênica , Raios Ultravioleta , beta-Galactosidase/metabolismoRESUMO
The role of the 50S particle of Escherichia coli ribosome and its 23S rRNA in the refolding and subunit association of dimeric porcine heart cytoplasmic malate dehydrogenase (s-MDH) has been investigated. The self-reconstitution of s-MDH is governed by two parallel pathways representing the folding of the inactive monomeric and the dimeric intermediates. However, in the presence of these folding modulators, only one first order kinetics was observed. To understand whether this involved the folding of the monomers or the dimers, subunit association of s-MDH was studied using fluorescein-5-isothiocyanate-rhodamine-isothiocyanate (FITC-RITC) fluorescence energy transfer and chemical cross-linking with gluteraldehyde. The observation suggests that during refolding the interaction of the unstructured monomers of s-MDH with these ribosomal folding modulators leads to very fast formation of structured monomers that immediately dimerise. These inactive dimers then fold to the native ones, which is the rate limiting step in 23S or 50S assisted refolding of s-MDH. Furthermore, the sequential action of the two fragments of domain V of 23S rRNA has been investigated in order to elucidate the mechanism. The central loop of domain V of 23S rRNA (RNA1) traps the monomeric intermediates, and when they are released by the upper stem-loop region of the domain V of 23S rRNA (RNA2) they are already structured enough to form dimeric intermediates which are directed towards the proper folding pathway.
Assuntos
Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Miocárdio/enzimologia , Dobramento de Proteína , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/metabolismo , Animais , Bacillus subtilis/genética , Sequência de Bases , Cromatografia em Gel , Reagentes de Ligações Cruzadas/metabolismo , Dimerização , Transferência de Energia , Escherichia coli/genética , Fluorescência , Glutaral/metabolismo , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peso Molecular , Conformação de Ácido Nucleico , Desnaturação Proteica , Renaturação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , SuínosRESUMO
The active site of a protein folding reaction is in domain V of the 23S rRNA in the bacterial ribosome and its homologs in other organisms. This domain has long been known as the peptidyl transferase center. Domain V of Bacillus subtilis is split into two segments, the more conserved large peptidyl transferase loop (RNA1) and the rest (RNA2). These two segments together act as a protein folding modulator as well as the complete domain V RNA. A number of site-directed mutations were introduced in RNA1 and RNA2 of B.subtilis, taking clues from reports of these sites being involved in various steps of protein synthesis. For example, sites like G2505, U2506, U2584 and U2585 in Escherichia coli RNA1 region are protected by deacylated tRNA at high Mg2+ concentration and A2602 is protected by amino acyl tRNA when the P site remains occupied already. Mutations A2058G and A2059G in the RNA1 region render the ribosome Ery(r )in E.coli and Lnc(r )in tobacco chloroplast. Sites in P loop G2252 and G2253 in E.coli are protected against modification by the CCA end of the P site bound tRNA. Mutations were introduced in corresponding nucleotides in B.subtilis RNA1 and RNA2 of domain V. The mutants were tested for refolding using unfolded protein binding assays with unfolded carbonic anhydrase. In the protein folding assay, the mutants showed partial to complete loss of this activity. In the filter binding assay for the RNA-refolding protein complex, the mutants showed an extent of protein binding that agreed well with their protein folding activity.