Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Sci Learn ; 4: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886740

RESUMO

Students in first-year university courses often focus on mimicking application of taught procedures and fail to gain adequate conceptual understanding. One potential approach to support meaningful learning is Productive Failure (PF). In PF, the conventional instruction process is reversed so that learners attempt to solve challenging problems ahead of receiving explicit instruction. While students often fail to produce satisfactory solutions (hence "Failure"), these attempts help learners encode key features and learn better from subsequent instruction (hence "Productive"). Effectiveness of PF was shown mainly in the context of statistical and intuitive concepts, and lessons that are designed and taught by learning scientists. We describe a quasi-experiment that evaluates the impact of PF in a large-enrollment introductory university-level biology course when designed and implemented by the course instructors. One course-section (295 students) learned two topics using PF; another section (279 students) learned the same topics using an active learning approach, which is the standard in this course. Performance was assessed on the subsequent midterm exam, after all students had ample opportunities for practice and feedback, and after some time has elapsed. PF students scored nearly five percentage-points higher on the relevant topics in the subsequent midterm exam. The effect was especially strong for low-performing students. Improvement on the final exam was only visible for low-performing students. We describe the intervention and its potential to transform large introductory university courses.

2.
BMC Genomics ; 9: 154, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18400103

RESUMO

BACKGROUND: Plants are exposed to attack from a large variety of herbivores. Feeding insects can induce substantial changes of the host plant transcriptome. Arabidopsis thaliana has been established as a relevant system for the discovery of genes associated with response to herbivory, including genes for specialized (i.e. secondary) metabolism as well as genes involved in plant-insect defence signalling. RESULTS: Using a 70-mer oligonucleotide microarray covering 26,090 gene-specific elements, we monitored changes of the Arabidopsis leaf transcriptome in response to feeding by diamond back moth (DBM; Plutella xylostella) larvae. Analysis of samples from a time course of one hour to 24 hours following onset of DBM feeding revealed almost three thousand (2,881) array elements (including 2,671 genes with AGI annotations) that were differentially expressed (>2-fold; p[t-test] < 0.05) of which 1,686 also changed more than twofold in expression between at least two time points of the time course with p(ANOVA) < 0.05. While the majority of these transcripts were up-regulated within 8 h upon onset of insect feeding relative to untreated controls, cluster analysis identified several distinct temporal patterns of transcriptome changes. Many of the DBM-induced genes fall into ontology groups annotated as stress response, secondary metabolism and signalling. Among DBM-induced genes associated with plant signal molecules or phytohormones, genes associated with octadecanoid signalling were clearly overrepresented. We identified a substantial number of differentially expressed genes associated with signal transduction in response to DBM feeding, and we compared there expression profiles with those of previously reported transcriptome responses induced by other insect herbivores, specifically Pieris rapae, Frankliniella occidentalis, Bemisia tabaci,Myzus persicae, and Brevicoryne brassicae. CONCLUSION: Arabidopsis responds to feeding DBM larvae with a drastic reprogramming of the transcriptome, which has considerable overlap with the response induced by other insect herbivores. Based on a meta-analysis of microarray data we identified groups of transcription factors that are either affected by multiple forms of biotic or abiotic stress including DBM feeding or, alternatively, were responsive to DBM herbivory but not to most other forms of stress.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mariposas , Animais , Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Larva , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA